Author Topic: Quiz2-6101 6D  (Read 3391 times)

Junhong Zhou

  • Newbie
  • *
  • Posts: 4
  • Karma: 0
    • View Profile
Quiz2-6101 6D
« on: October 02, 2020, 02:22:25 PM »
Problem(3pt). Find all points of continuity of the given function;
$$f(z)=
\begin{cases}\frac{z^4-1}{z-i},& z\neq i\\4i, & z=i
\end{cases}$$

Answer:

f(z) is continuous when $z\neq i$.

When z = i, then

$z^4-1=i^4-1=1-1=0$

$z - i = i-i = 0$

Now use the L'Hospital's Rule we have:
\begin{align*}
    \lim_{z \to i} \frac{z^4-1}{z-i} &= \lim_{z \to i} \frac{4z^3}{1}\\
    &= 4i^3\\
    &= -4i\\
    & \neq 4i
\end{align*}
Therefore f(z) is not continuous at z = i.