(siny/y-2e^(-x) sinx )+((cosy+2e^(-x) cosx)/y)y'=0, u(x,y)=ye^x
Answer:
(siny/y-2e^(-x) sinx )+((cosy+2e^(-x) cosx)/y)y'=0
M=siny/y-2e^(-x) sinx
dM/dY=〖-y〗^(-2) siny+1/y cosy
N=(cosy+2e^(-x) cosx)/y
dN/dX=1/y (-2e^(-x) cosx+2e^(-x) (-sinx ))
Since dM/dY does not equal dN/dX
The equation is not exact.
Multiply μ=ye^x to both side of the equation
Get:
sin〖(y) e^x 〗-2y sinx+(e^x cosy+2 cos(x))y^'=0
M=sin〖(y) e^x 〗-2y sinx
dM/dY=e^x cosy-2 sinx
N=e^x cosy+2 cosx
dN/dX=e^x cosy-2 sinx
Now dM/dY=dN/dX
The equation is exact.
There exists ϕ(x,y) s.t. dϕ/dx=M, dϕ/dy=N
ϕ=∫M dx=∫〖sin〖(y)〗 e^x 〗-2y sin(x) dx=sin(y) e^x +2y cos(x)+h(y)
dϕ/dy=e^x cosy+2 cosx+h'(y)
Also, dϕ/dy=N=e^x cosy+2 cosx
So h’(y)=0
ϕ(x,y)=sin(y) e^x +2y cos(x)=C