Solve with argument principle
$\mathrm{f}\left(\mathrm{z}\right)\mathrm{=}{\mathrm{4z}}^{\mathrm{4}}+3{\mathrm{i}}{\mathrm{z}}^{\mathrm{2}}-2+{\mathrm{i}}$
When $\mathrm{z\ }$is on Real axis, let $\mathrm{z=x+iy}$, then $\mathrm{y=0}$, $\mathrm{z=x}$
$\mathrm{f}\left(\mathrm{z}\right)\mathrm{=}{\mathrm{4z}}^{\mathrm{4}}+3{\mathrm{i}}{\mathrm{z}}^{\mathrm{2}}-2+{\mathrm{i}}\mathrm{=4}{\mathrm{x}}^{\mathrm{4}}+3{\mathrm{i}}{\mathrm{x}}^{\mathrm{2}}-2+{\mathrm{i}}$
${\mathrm{arg} \left(\mathrm{f}\left(\mathrm{z}\right)\right)\ }\mathrm{=}{\mathrm{arctan} \left(\frac{3x^2+1}{4x^4+x-2}\right)\ }$
As R goes to infinity, $\frac{3x^2+1}{4x^4+x-2}\mathrm{=}0$
Then ${\mathrm{arctan} \left(\frac{3x^2+1}{4x^4+x-2}\right)\ }\mathrm{=}0$
Let $\mathrm{z=}{\mathrm{Re}}^{\mathrm{it}}\mathrm{,\ \ 0}\mathrm{\le }\mathrm{t}\mathrm{\le }\mathrm{\pi }$
Then $\mathrm{f}\left(\mathrm{z}\right)\mathrm{=4}{({\mathrm{Re}}^{\mathrm{it}})}^{\mathrm{4}}+3i{\left({\mathrm{Re}}^{\mathrm{it}}\right)}^2-2+i\mathrm{=4}{\mathrm{R}}^{\mathrm{4}}e^{i4t}+3iR^2e^{i2t}-2+i$
$\mathrm{arg}\mathrm{}\mathrm{(f}\left(\mathrm{z}\right)\mathrm{)}\mathrm{\cong }\mathrm{4t}$
When $\mathrm{t=0}$, ${\mathrm{arg} \left(\mathrm{f}\left(\mathrm{z}\right)\right)\ }\mathrm{=4*0=0}$
When $\mathrm{t=}\mathrm{\pi }$, ${\mathrm{arg} \left(\mathrm{f}\left(\mathrm{z}\right)\right)\ }\mathrm{=4}\ \mathrm{\pi }\mathrm{=4}\mathrm{\pi }$
Then the overall net change in ${\mathrm{arg} \left(\mathrm{f}\left(\mathrm{z}\right)\right)\ }$ is $\left(\mathrm{4}\mathrm{\pi }\mathrm{-0}\right)\mathrm{+}\mathrm{(}0\mathrm{-}\mathrm{0)}\mathrm{+}\mathrm{(}0\mathrm{-}\mathrm{0)}\mathrm{=4}\mathrm{\pi }$
Then the number of zeros in $\mathrm{f}\left(\mathrm{z}\right)$ is $\frac{1}{2\pi }*\left(4\pi \right)=2$