Calculate an improper integral
$$
I=\int_0^\infty \frac{\sqrt{x}\,dx}{(x^2+2x+2)}.
$$
Hint:
(a) Calculate
$$
J_{R,\varepsilon} = \int_{\Gamma_{R,\varepsilon}} f(z)\,dz, \qquad f(z)=\frac{\sqrt{z}}{(z^2+2z+2)}
$$
where we have chosen the branch of $\sqrt{z}$ such that it is analytic inside $\Gamma$ and is real-valued for $z=x+i0$ with $x>0$. $\Gamma=\Gamma_{R,\varepsilon}$ is the contour on the figure below:
(b) Prove that $\int_{\gamma_R} \frac{\sqrt{z}\,dz}{(z^2+1)}\to 0$ as $R\to \infty$ and $\int_{\gamma_\varepsilon} \frac{\sqrt{z}\,dz}{(z^2+1)}\to 0$ as $\varepsilon\to 0^+$ where $\gamma_R$ and $\gamma_\varepsilon$ are large and small circles on the picture. This will give you a value of
$$
\int_{\infty}^0 f(x-i0)\,dx + \int_0^{\infty} f(x+i0)\,dx
\tag{*}
$$
where $f(x\pm i0)=\lim _{\delta\to 0^+} f(x+i\delta)$.
(c) Express both integrals using $I$.