If the Wronskian $W$ of $f$ and $g$ is $t^{2}e^{t}$, and if $f(t)=t$, find $g(t)$.
Suppose that $W(f,g)=t^{2}e^{t}$ and $f(t)=t \Rightarrow f'(t)=1$
Then from $W(f,g)=fg'-gf'$, we get a first order DE
$$tg'-g\cdot 1=t^{2}e^{t}\tag{1}$$
Dividing both sides of $(1)$ by $t$ and multiplying by integrating factor, $\mu(t)=e^{\int{p(t)}dt}=\frac{1}{t}$, we have
$$(\frac{1}{t} g)'=e^{t}$$
$$\int{(\frac{1}{t} g)'}=\int{e^{t}}dt$$
$$\frac{1}{t} g=e^{t}+c$$
$$g(t)=te^{t}+ct.$$