Consider the PDE with boundary conditions:
\begin{align}
&u_{tt}+c^2u_{xxxx} + a u=0,\qquad&&0<x<L, \tag{1}\\
&u|_{x=0} =u_{x}|_{x=0}=0,\tag{2}\\
&u_{xx}|_{x=L} =u_{xxx}|_{x=0}=0|_{x=L}=0, tag{3}
\end{align}
where $c>0$ and $a$ are constant. Prove that the energy $E(t)$ defined as
\begin{equation}
E(t)= \frac{1}{2}\int_0^L \bigl( u_t^2 + c^2u_{xx}^2 +au^2)\,dx
\tag{4}
\end{equation}
does not depend on $t$.