With the initial conditions implying:
$ g(x) = h(x) = 0 $, and $c = 3 $.
This means that D'Alembert's formula simplifies, from:
$$ u(x,t) = \frac{1}{2} (g(x+ct)+g(x-ct)) + \frac{1}{2c} \int_{x-ct}^{x+ct} h(y)dy + \frac{1}{2c}\int_{0}^{t} \int_{x-c(t-t')}^{x+c(t-t')} f(x',t')dx'dt' $$
Into:
$$ u(x,t) = \frac{1}{6}\int_{0}^{t} \int_{x-3(t-t')}^{x+3(t-t')} f(x',t')dx'dt' $$
As suggested, rearranging for the order of integration would be convenient here. For simplicity, I also broke up the characteristic triangle into two smaller triangles.
For the first one:
$ 0 < t' < x \frac{x'-x+3t}{3} $ and $ x-3t < x' < x$
And the second:
$ 0 < t' < x \frac{-x'+x+3t}{3} $ and $ x < x' < x+3t$
This breaks our integral up into the following:
$$ (1) = \frac{1}{6} \int_{x-3t}^{x} \int_{0}^{\frac{x' - x + 3t}{3}} 18e^{-x'^2}dt'dx' $$
$$ (2) = \frac{1}{6} \int_{x}^{x+3t} \int_{0}^{\frac{-x' + x + 3t}{3}} 18e^{-x'^2}dt'dx' $$
Where $ u(x,t) = (1)+(2) $
Starting with (1), we first integrate to get:
$$ (1) = \frac{1}{6} \int_{x-3t}^{x} \frac{x' - x +3t}{3} 18e^{-x'^2} dx' $$
$$ (1) = 3 \int_{x-3t}^{x} (3t-x)e^{-x'^2}dx' + 3 \int_{x-3t}^{x} x'e^{-x'^2} dx' $$
The first integral can be resolved to error functions, the second requires a simple substitution to solve:
Let
$ u = x^2 $ then $ du = 2xdx $. Thus, for second term $\int_{(x-3t)^2}^{x^2} \frac{3}{2} e^-u du = \frac{3}{2} ( e^{-(x-3t)^2} - e^{-(x)^2}) $
Putting it together, we get that :
$$ (1) = 3\sqrt{\pi} (3t-x) (erf(x) - erf(x-3t)) + \frac{3}{2} ( e^{-(x-3t)^2} - e^{-(x)^2}) $$
Likewise, for (2) we should get:
$$ (2) = 3\sqrt{\pi} (3t+x) (erf(x+3t) - erf(x)) - \frac{3}{2} ( e^{-(x)^2} - e^{-(x+3t)^2}) $$
Then
$$ u(x,t) = 3 \sqrt{\pi} (3t(erf(x+3t) - erf(x-3t)) - 2xerf(x) + x(erf(x+3t)+erf(x-3t)) - 3e^{-x^2} + \frac{3}{2} (e^{-(x-3t)^2} + e^{-(x-3t)^2} $$