Toronto Math Forum
Welcome,
Guest
. Please
login
or
register
.
1 Hour
1 Day
1 Week
1 Month
Forever
Login with username, password and session length
News:
Home
Help
Search
Calendar
Login
Register
Toronto Math Forum
»
APM346-2018S
»
APM346--Tests
»
Quiz-1
»
Q1-T0101-P1,2
« previous
next »
Print
Pages: [
1
]
Author
Topic: Q1-T0101-P1,2 (Read 4570 times)
Jingxuan Zhang
Elder Member
Posts: 106
Karma: 20
Q1-T0101-P1,2
«
on:
January 25, 2018, 01:10:48 PM »
1. General solution of
$$u_{xy}=e^{x+y}\implies u_{x}=e^{x+y}+\varphi_{x}(x)\implies e^{x+y}+\varphi(x)+\psi(y)$$
2. General solution of
$$u_{t}+(x^2+1) u_{x}=0 \implies C=\arctan(x)-t \implies u=\varphi(\arctan (x)-t)$$
«
Last Edit: January 27, 2018, 07:15:47 AM by Victor Ivrii
»
Logged
Victor Ivrii
Administrator
Elder Member
Posts: 2607
Karma: 0
Re: Thursday Session
«
Reply #1 on:
January 25, 2018, 05:19:36 PM »
Please, write equation of characteristics before integrating it
Logged
Ioana Nedelcu
Full Member
Posts: 29
Karma: 3
Re: Thursday Session
«
Reply #2 on:
January 25, 2018, 10:15:48 PM »
The original integral is $$ \frac{dt}{1} = \frac{dx}{x^2 + 1} = 0 $$
Logged
Print
Pages: [
1
]
« previous
next »
Toronto Math Forum
»
APM346-2018S
»
APM346--Tests
»
Quiz-1
»
Q1-T0101-P1,2