Toronto Math Forum
Welcome,
Guest
. Please
login
or
register
.
1 Hour
1 Day
1 Week
1 Month
Forever
Login with username, password and session length
News:
Home
Help
Search
Calendar
Login
Register
Toronto Math Forum
»
APM346-2016F
»
APM346--Lectures
»
Chapter 4
»
4.2 Example 4(periodic)
« previous
next »
Print
Pages: [
1
]
Author
Topic: 4.2 Example 4(periodic) (Read 3223 times)
Tianyi Zhang
Jr. Member
Posts: 9
Karma: 0
4.2 Example 4(periodic)
«
on:
November 02, 2016, 02:10:55 PM »
$$X^{''} + \lambda X = 0$$
with condition $$X(0) = X(l), X^{'}(0) = X^{'}(l)$$
how to get the answer $$\lambda_{2n-1} = \lambda_{2n} = (\frac{n\pi}{2l})^{2}$$ and the corresponding eigenfunctions?
Logged
Victor Ivrii
Administrator
Elder Member
Posts: 2607
Karma: 0
Re: 4.2 Example 4(periodic)
«
Reply #1 on:
November 02, 2016, 04:58:40 PM »
We did it on lectures: you need to solve constant coefficients ODE and find when and how many non-trivial solutions it has satisfying boundary conditions
http://www.math.toronto.edu/courses/apm346h1/20169/PDE-textbook/Chapter4/S4.2.html#example-4.2.2
Anyone wants to post details here?
PS. It should be $=(\frac{2\pi n }{l})^2$. I will fix misprint tonight.
«
Last Edit: November 02, 2016, 05:32:58 PM by Victor Ivrii
»
Logged
Print
Pages: [
1
]
« previous
next »
Toronto Math Forum
»
APM346-2016F
»
APM346--Lectures
»
Chapter 4
»
4.2 Example 4(periodic)