(d) We then have a general solution $u(r, \theta) = \sum_1^{\infty}$, and we have to make use of the boundary conditions. So we have:
\begin{equation}
u(r, \theta) = \sum_1^{\infty} \left[ r^n \left(A_n\cos n \theta + B_n \sin n \theta \right) + r^{-n} \left( C_n \cos n \theta + D_n \sin n \theta \right) \right]
\end{equation}
As $r=1$:
\begin{equation}
u(1, \theta) = \sum_1^{\infty} \left[ \left(A_n\cos n \theta + B_n \sin n \theta \right) + \left( C_n \cos n \theta + D_n \sin n \theta \right) \right] = \sin\theta
\end{equation}
We see that this is only matched when all terms that aren't $n=1$ are zero. Also, $A_1$ and $C_1$ are zero. So we're left with:
\begin{equation}
B_1 + D_1 = 1
\end{equation}
Likewise for $r=2$:
\begin{equation}
u(2, \theta) = \sum_1^{\infty} \left[ 2^n \left(A_n\cos n \theta + B_n \sin n \theta \right) + 2^{-n} \left( C_n \cos n \theta + D_n \sin n \theta \right) \right] = 3\sin\theta
\end{equation}
By the same logic as before, notice that we must have all coefficients zero, except for $B_1$ and $D_1$, where we have that:
\begin{equation}
2B_1 + \frac{1}{2}D_1 = 3
\end{equation}
We can solve these two equations for $B_1$ and $D_1$ to get that $D_1 = -\frac{2}{3}$ and $B_1 = \frac{5}{3}$. Our answer is then:
\begin{equation}
u(x,t) = u(r, \theta) = r \frac{5}{3} \sin n \theta - \frac{1}{r} \frac{2}{3} \sin n \theta
\end{equation}