For part b), (...not sure)
Given $$E = k\iint_D \sqrt{1+u_x^2+u_y^2} dx dy - \iint_D fu dxdy\\=\iint_D (k\sqrt{1+u_x^2+u_y^2} - fu) dx dy$$
Then we have, $$L=k\sqrt{1+u_x^2+u_y^2} - fu\\L_{u_x} = \frac{ku_x}{\sqrt{1+u_x^2+u_y^2}},\ L_{u_y} = \frac{ku_y}{\sqrt{1+u_x^2+u_y^2}},\ L_u = -f$$
Then, the Euler-Lagrange is $$-f - \frac{\partial}{\partial x}(\frac{ku_x}{\sqrt{1+u_x^2+u_y^2}}) - \frac{\partial}{\partial y}(\frac{ku_y}{\sqrt{1+u_x^2+u_y^2}}) = 0$$