$\newcommand{\erf}{\operatorname{erf}}$
Find solution $u(x,t)$ to
\begin{align}
&u_t=u_{xx} && -\infty<x<\infty, \ t>0,\label{eq-5-1}\\[4pt]
&u|_{t=0}=\left\{\begin{aligned}
&x\qquad && |x|<1,\\[2pt]
&0 && |x|>1
\end{aligned}\right.,\\[4pt]
&\max |u|<\infty.
\end{align}
Calculate integral.
Hint:
For $u_t=ku_{xx}$ use $\displaystyle{G(x,t)=\frac{1}{\sqrt{4\pi kt}}\exp (- (x-y)^2/4kt)}$.
To calculate integral make change of variables and use $\displaystyle{\erf(z)=\frac{2}{\sqrt{\pi}}\int_0^z e^{-z^2}\,dz}$.