So, let $$\frac{X''(x)}{X(x)} = -\lambda,\ \frac{T''(t)}{T(t)} = -c^2\lambda$$
Then we have,$$ X''(x) + \lambda X(x) = 0,\ T''(t) + c^2\lambda T(t) = 0$$
And let $-\lambda = \omega^2$, We get $$X(x) = A\cos(\omega x) +B\sin(\omega x),\ T(t) = C\cos(c\omega t) + D\sin(c\omega t)$$
Given conditions that, $u_x(0,t) = 0,\ (u_x + i\alpha u_t)(l,t) = 0$
We have $$X'(0)T(t) = 0\\X'(0) = 0 = \omega B \\B = 0$$
Hence, $$X(x) = A\cos(\omega x)$$
$$X'(l)T(t) + i\alpha X(l)T'(t) = 0\\ -\omega A\sin(\omega l ) T(t) + i\alpha A\cos(\omega l)T'(t) = 0\\T'(t) = \frac{\omega\sin(\omega l)}{i\alpha\cos(\omega l)}T(t)\\ T'(t) = \frac{\omega}{i\alpha}\tan(\omega l)T(t)\\T'(t) = \frac{-i\omega}{\alpha}\tan(\omega l)T(t)$$
Solve this ODE, we get $$ T(t) =Ke^{\frac{-i\omega t}{\alpha}\tan(\omega l)}$$