The general solution is
\begin{equation} u(x,t) = \frac{1}{2c}\int_0^t{\int_{x-c(t-t')}^{x+c(t-t')} f(x',t')dx'dt'} \end{equation}
For problem: \begin{equation}u_{tt} - c^2u_{xx} = f(x,t) \quad and \quad g(x)=0,\ h(x)=0\end{equation}
To solve problems in P1 (4) - (7), substitute the f(x,t) to corresponding equations.
Below are my results, not sure if they are right.
a)
\begin{equation} u(x,t) = \frac{1}{2\alpha^2c^2}[sin(\alpha x + \alpha ct) - sin(\alpha x - \alpha ct)]\end{equation}
b): \begin{equation} u(x,t) = \frac{sin(\alpha x)}{\beta^2 - \alpha^2c^2}[sin(\beta t) - sin(\alpha ct)] \end{equation}
c): \begin{equation} u(x,t) = \frac{1}{2c^2}[F(x+ct)-F(x-ct)] \end{equation}
d): stuck at \begin{equation} u(x,t) = \frac{1}{2c}\int^t_0[F''(x+ct-ct')-F''(x-ct+ct')]t'dt' \end{equation}
Kinda feel we can still do the integration but don't know how after this.