a)
i. We have characteristics: \begin{equation}
\frac{dt}{2} = \frac{dx}{3}
\end{equation}
So:
\begin{equation}
3t = 2x + C
\end{equation}
The general solution is:
\begin{equation}
u = \phi(3t - 2x)
\end{equation}
ii. We have characteristics: \begin{equation}
\frac{dt}{1} = \frac{dx}{t}
\end{equation}
So:
\begin{equation}
\frac{t^2}{2} = x + C
\end{equation}
The general solution is:
\begin{equation}
u = \phi(\frac{t^2}{2} - x)
\end{equation}
iii. We have characteristics: \begin{equation}
\frac{dt}{1} = \frac{dx}{x}
\end{equation}
So:
\begin{equation}
t = \ln(x) + C
\end{equation}
The general solution is:
\begin{equation}
u = \phi(t - \ln(x))
\end{equation}
iv. We have characteristics: \begin{equation}
\frac{dt}{1} = \frac{dx}{x^2}
\end{equation}
So:
\begin{equation}
t = \frac{-1}{x} + C
\end{equation}
The general solution is:
\begin{equation}
u = \phi(t + \frac{1}{x})
\end{equation}
v. We have characteristics: \begin{equation}
\frac{dt}{1} = \frac{dx}{x^3}
\end{equation}
So:
\begin{equation}
t = \frac{-1}{2x^2} + C
\end{equation}
The general solution is:
\begin{equation}
u = \phi(t + \frac{1}{2x^2})
\end{equation}