\begin{gathered}
part(a): \hfill \\
\hat f(\omega ) = \frac{1}{{2\pi }}\int\limits_{ - \infty }^\infty {f(x){e^{ - i\omega x}}dx} \hfill \\
= \frac{1}{{2\pi }}\int\limits_{ - a}^a {{e^{ - i\omega x}}dx} \hfill \\
= \frac{1}{{2\pi }}(\frac{{{e^{i\omega a}} - {e^{ - i\omega a}}}}{{i\omega }}) \hfill \\
= \frac{{\sin (\omega a)}}{{\pi \omega }} \hfill \\
\hfill \\
part(b): \hfill \\
\hfill \\
take f(x) = xg(x),where, g(x) = 1 \hfill \\
hence, \hat f(\omega ) = i\frac{{d\hat g(\omega )}}{{d\omega }} = i\frac{{d(\frac{{\sin (\omega a)}}{{\pi \omega }})}}{{d\omega }} = i(\frac{{a\cos (a\omega )}}{{\pi \omega }} - \frac{{\sin (a\omega )}}{{\pi {\omega ^2}}}) \hfill \\
\hfill \\
part(c): \hfill \\
\hfill \\
IFT: \hfill \\
f(x) = \int\limits_{ - \infty }^\infty { \hat f(\omega ){e^{i\omega x}}d\omega = } \int\limits_{ - \infty }^\infty {\frac{{\sin (\omega a)}}{{\pi \omega }}} {e^{i\omega x}}d\omega \hfill \\
thus,\int\limits_{ - \infty }^\infty {\frac{{\sin (xa)}}{x}{e^{i\omega x}}} dx = \pi , |\omega | \leqslant a,if a = 1,and \omega = 0. \hfill \\
\end{gathered} \]