\begin{equation*}
y + (2xy - e^{-2y})y' = 0 \ .
\end{equation*}
Let $M(x,y) = y$, $N(x,y) =2xy - e^{-2y}$. Then $M_y(x,y) = 1$, $N_x(x,y) = 2y$.
The equation is not exact. Lets find an integrating factor to make it exact.
$d\mu/dy = (N_x - M_y)\mu / M\implies
d\mu/dy = (2y - 1)\mu / y \implies
d\mu/ \mu = (2 - (1/y))dy\implies
\ln \mu = 2y - lny \implies
\mu = e^{2y - lny} \implies
\mu = e^{2y} / y $
Now multiply the equation by $\mu = e^{2y} / y$
\begin{equation}
e^{2y} + (2xe^{2y} - 1/y ) y′= 0
\end{equation}
Now $M(x,y) = e^{2y}$, $N(x,y) =(2xe^{2y} - 1/y )$.
There is a $\Psi(x, y)$ such that:
\begin{gather}
\Psi _x(x, y) = M(x,y) = e^{2y}\\
\Psi _y (x, y) = N(x,y) = (2xe^{2y} - 1/y )
\end{gather}
Integrating (2) we have $\Psi (x, y) = xe^{2y} + f(y)$. Using this, differentiate to get
$\Psi_y (x, y) = 2xe^{2y} + f'(y) $.
Compare this with (3): $f'(y) = -1/y$. $Meaning f(y) = -ln|y|$
So,
\begin{equation}
\Psi (x, y) = xe^{2y} - ln|y| = C
\end{equation}
When x = 1, y = -2
$e^{-4} - ln |-2| = C $
The solution is
\begin{equation}
xe^{2y} - ln|y| = e^{-4} - ln 2
\end{equation}