$$let\ h(z) = z, g(z) = {sin(z)}^2$$
$As \ z _0 = 0:$
$$h(0) = 0, h'(0)= 1 \ne1\quad\therefore order = 1$$
$$g(z) = {sin(z)}^2 = 0$$
$$g'(z) = 2sin(z)cos(z), g'(0) = 0$$
$$g''(z) = −2(sin^2(z)-cos^2(z)), g''(0) = 2\ne0, \quad\therefore order = 2$$
$$\quad\therefore 2-1= 1 \quad\therefore \ order\ of \ pole = 1$$
$$\quad\therefore{{z}\over sin^{2}(z)} = a_{-1}z^{-1} + a_{0} + a_{1}z^{1} +...$$
$$z= (z-{z^{3}\over 3!} + {z^{5}\over 5!} -... )^{2}(a_{-1}z^{-1} + a_{0} + a_{1}z^{1} + ... ) $$
$After\ equating\ coefficients\ of\ equal\ powers\ of\ z, we\ can\ get:$
$$a_{-1}=1,a_{0}=0, a_{1}={{1}\over{3}}, a_{2}= 0, a_{3}={{1}\over{15}},a_{4}=0,a_{5}= {{2}\over{189}}$$
$$\quad\therefore {{1}\over {z}} + {{z}\over3} + {{1z^3}\over15} +{{2z^5}\over{189}} +..., Res(f;0)=1$$