First, try to find the eigenvalues with respect to the parameter
$A=\begin{bmatrix}
2&-5\\
\alpha&-2\\
\end{bmatrix}$
$det(A-rI)=(2-r)(-2-r)+5\alpha=0$
$r^2-4+5\alpha=0$
$r=\frac{\pm\sqrt{16-20\alpha}}{2}$
Notice that $-4+5\alpha$ determines the type of roots, so $\alpha=4/5$ is the critical value
Case 1
When $-4+5\alpha=0, \alpha=0$, there is a repeated eigenvalue 0 with one eigenvector
Case 2
When $-4+5\alpha>0, \alpha>4/5$, there are two distinct complex eigenvalues without real parts
Case 3
When $-4+5\alpha<0, \alpha<4/5$, there are two distinct real eigenvalues with different signs