Author Topic: Q3 TUT 5101  (Read 5344 times)

Victor Ivrii

  • Administrator
  • Elder Member
  • *****
  • Posts: 2607
  • Karma: 0
    • View Profile
    • Personal website of Victor Ivrii
Q3 TUT 5101
« on: October 12, 2018, 06:09:32 PM »
Find the Wronskian of two solutions of the given differential equation without solving the equation.
$$
(1-x^2)y''-2xy'+\alpha(\alpha+1)y=0, \qquad\text{Legendre's equation}.
$$

Yiran Zhu

  • Newbie
  • *
  • Posts: 3
  • Karma: 3
    • View Profile
Re: Q3 TUT 5101
« Reply #1 on: October 12, 2018, 06:21:57 PM »
This is the hand written solution. I am still trying to figure out how to convert latex into plain text.

Yiting Zhang

  • Jr. Member
  • **
  • Posts: 6
  • Karma: 8
    • View Profile
Re: Q3 TUT 5101
« Reply #2 on: October 12, 2018, 06:26:58 PM »
$$y′′−\frac{2x}{1−x^2}y′+\frac{\alpha(\alpha+1)}{1−x^2}y=0$$
$$W=ce^{\int −p(x) dx}, p(x) = −\frac{2x}{1−x^2}$$
$$W = ce^{\int \frac{2x}{1−x^2} dx}$$
$$u=1−x^2, du=−2xdx$$
$$ce^{-\int \frac{1}{u}du} = ce^{-ln(u)+C}=ce^{−ln(1−x^2)+C}=\frac{ce^C}{1-x^2}$$
Since $ce^C$ is constant. Let $ce^C = c$
$$W=\frac{c}{1−x^2}$$

Victor Ivrii

  • Administrator
  • Elder Member
  • *****
  • Posts: 2607
  • Karma: 0
    • View Profile
    • Personal website of Victor Ivrii
Re: Q3 TUT 5101
« Reply #3 on: October 12, 2018, 07:36:47 PM »
Yiran, you use LaTeX math snippets on the forum
Yiting: ln must be escaped as \ln