1
Quiz-7 / Re: TUT 0301
« on: November 30, 2018, 03:58:15 PM »
$$x^2+ix+2+i=0 \Rightarrow x=\frac{-\pm\sqrt{-9-4i}}{2}$$
$1)$.
$x\in[0,R]$,
$$\begin{align}f(x)&=x^2+ix+2+i \\&=(x^2+2)(1+\frac{i(x+1)}{x^2+2})\end{align} \\f(0)=2+i\\f(R)=R^2+iR+2+i$$
Thus, $\arg(f(x))$ starts from $\arctan(\frac{1}{2})$ and ends on $\arctan(\frac{R+1}{R^2+2})$.
$\\$
$2)$.
$x=Re^{it},0\leq t\leq \frac{\pi}{2}$,
$$\begin{align}f(Re^{it})&=(Re^{it})^2+i(Re^{it})+2+i \\&=R^2(e^{it}-\frac{ie^{it}}{R}+\frac{2+i}{R^2})\end{align}, 0\leq t \leq \pi.$$
$\\$
$3)$.
$x=iy, 0 \leq y \leq R$,
$$f(iy)=-y^2-y+2+i \\ y=0 \Rightarrow 2+i \\ y=R \Rightarrow -R^2-R+2+i$$
Thus, it is a horizontal line.
$\\$
Therefore, the net changes of the argument is $0$, there are no zeros in the first quadrant.
$1)$.
$x\in[0,R]$,
$$\begin{align}f(x)&=x^2+ix+2+i \\&=(x^2+2)(1+\frac{i(x+1)}{x^2+2})\end{align} \\f(0)=2+i\\f(R)=R^2+iR+2+i$$
Thus, $\arg(f(x))$ starts from $\arctan(\frac{1}{2})$ and ends on $\arctan(\frac{R+1}{R^2+2})$.
$\\$
$2)$.
$x=Re^{it},0\leq t\leq \frac{\pi}{2}$,
$$\begin{align}f(Re^{it})&=(Re^{it})^2+i(Re^{it})+2+i \\&=R^2(e^{it}-\frac{ie^{it}}{R}+\frac{2+i}{R^2})\end{align}, 0\leq t \leq \pi.$$
$\\$
$3)$.
$x=iy, 0 \leq y \leq R$,
$$f(iy)=-y^2-y+2+i \\ y=0 \Rightarrow 2+i \\ y=R \Rightarrow -R^2-R+2+i$$
Thus, it is a horizontal line.
$\\$
Therefore, the net changes of the argument is $0$, there are no zeros in the first quadrant.