1
Web Bonus Problems / Re: Week 13 -- BP2
« on: April 05, 2018, 03:07:00 PM »
New proof evaluating the limit at $x=0$:
$f'(\varphi) = -f(\varphi ') = -\int f(x) \varphi'(x)\,dx = -\int \mathrm{ln}|x| \varphi'(x)\,dx = -\int_{-\infty}^{\infty}\mathrm{ln}|x| \varphi'(x)\,dx$
Using limits to evaluate an improper integral
$= -\lim_{\epsilon \to 0^+} \left[ \int_{-\infty}^{-\epsilon}\mathrm{ln}|x| \varphi'(x)\,dx + \int_{\epsilon}^{\infty}\mathrm{ln}|x| \varphi'(x)\,dx \right]$
Then by integration by parts, we have:
$\lim_{\epsilon \to 0^+} \int_{-\infty}^{-\epsilon}\mathrm{ln}|x| \varphi'(x)\,dx$
$ = \lim_{\epsilon \to 0^+} \left [\mathrm{ln}|-\epsilon| \varphi(-\epsilon) - \mathrm{ln}|-\infty|\varphi(-\infty)\right] - \lim_{\epsilon \to 0^+}\int_{-\infty}^{-\epsilon}x^{-1}\varphi(x)\,dx$
and
$\lim_{\epsilon \to 0^+} \int_{\epsilon}^{\infty}\mathrm{ln}|x| \varphi'(x)\,dx$
$ = \lim_{\epsilon \to 0^+} \left[ \mathrm{ln}|\infty| \varphi(\infty) - \mathrm{ln}|\epsilon|\varphi(\epsilon)\right] - \lim_{\epsilon \to 0^+}\int_{\epsilon}^{\infty}x^{-1}\varphi(x)\,dx$
By $\mathrm{ln}|x|$ and $\varphi(x)$ being even (is this correct?) we get:
$\lim_{\epsilon \to 0^+}\left [\mathrm{ln}|-\epsilon| \varphi(-\epsilon) - \mathrm{ln}|-\infty|\varphi(-\infty) + \mathrm{ln}|\infty| \varphi(\infty) - \mathrm{ln}|\epsilon|\varphi(\epsilon)\right] = 0$
so
$f'(\varphi)$
$= -\lim_{\epsilon \to 0^+} \left[ \int_{-\infty}^{-\epsilon}\mathrm{ln}|x| \varphi'(x)\,dx + \int_{\epsilon}^{\infty}\mathrm{ln}|x| \varphi'(x)\,dx \right] = \lim_{\epsilon \to 0^+}\int_{-\infty}^{-\epsilon}x^{-1}\varphi(x)\,dx + \lim_{\epsilon \to 0^+}\int_{\epsilon}^{\infty}x^{-1}\varphi(x)\,dx = pv\int \mathrm{ln}|x| \varphi'(x)\,dx$
$f'(\varphi) = -f(\varphi ') = -\int f(x) \varphi'(x)\,dx = -\int \mathrm{ln}|x| \varphi'(x)\,dx = -\int_{-\infty}^{\infty}\mathrm{ln}|x| \varphi'(x)\,dx$
Using limits to evaluate an improper integral
$= -\lim_{\epsilon \to 0^+} \left[ \int_{-\infty}^{-\epsilon}\mathrm{ln}|x| \varphi'(x)\,dx + \int_{\epsilon}^{\infty}\mathrm{ln}|x| \varphi'(x)\,dx \right]$
Then by integration by parts, we have:
$\lim_{\epsilon \to 0^+} \int_{-\infty}^{-\epsilon}\mathrm{ln}|x| \varphi'(x)\,dx$
$ = \lim_{\epsilon \to 0^+} \left [\mathrm{ln}|-\epsilon| \varphi(-\epsilon) - \mathrm{ln}|-\infty|\varphi(-\infty)\right] - \lim_{\epsilon \to 0^+}\int_{-\infty}^{-\epsilon}x^{-1}\varphi(x)\,dx$
and
$\lim_{\epsilon \to 0^+} \int_{\epsilon}^{\infty}\mathrm{ln}|x| \varphi'(x)\,dx$
$ = \lim_{\epsilon \to 0^+} \left[ \mathrm{ln}|\infty| \varphi(\infty) - \mathrm{ln}|\epsilon|\varphi(\epsilon)\right] - \lim_{\epsilon \to 0^+}\int_{\epsilon}^{\infty}x^{-1}\varphi(x)\,dx$
By $\mathrm{ln}|x|$ and $\varphi(x)$ being even (is this correct?) we get:
$\lim_{\epsilon \to 0^+}\left [\mathrm{ln}|-\epsilon| \varphi(-\epsilon) - \mathrm{ln}|-\infty|\varphi(-\infty) + \mathrm{ln}|\infty| \varphi(\infty) - \mathrm{ln}|\epsilon|\varphi(\epsilon)\right] = 0$
so
$f'(\varphi)$
$= -\lim_{\epsilon \to 0^+} \left[ \int_{-\infty}^{-\epsilon}\mathrm{ln}|x| \varphi'(x)\,dx + \int_{\epsilon}^{\infty}\mathrm{ln}|x| \varphi'(x)\,dx \right] = \lim_{\epsilon \to 0^+}\int_{-\infty}^{-\epsilon}x^{-1}\varphi(x)\,dx + \lim_{\epsilon \to 0^+}\int_{\epsilon}^{\infty}x^{-1}\varphi(x)\,dx = pv\int \mathrm{ln}|x| \varphi'(x)\,dx$