1
Using spherical coodinates, equation (1) can be rewritten as
\begin{align*}
&r u_{tt} - (ru_{rr} + 2u_r) = 0\\
&(r u)_{tt} - (r u)_{rr} = 0
\end{align*}
Let
\begin{equation*}
v = ru
\end{equation*}
And we have
\begin{equation}
v_{tt} - v_{rr} = 0
\end{equation}
We translated the boundary conditions as
\begin{align} &v(r,0)=\left\{
\begin{aligned}
&r\quad &&r<1,\\ &0 &&r\ge 1,
\end{aligned}
\right.\qquad v_t(r,0)=0
\end{align}
In addition, we have a boundary condition from the continuity of u:
\begin{equation}
v|_{r=0} = 0
\end{equation}
Since the boundary conditions are spherical symmetric and only depend on $r$ and $t$, we expect the solution to be a function of $r$ and $t$ also. Thus, we separate variables by $v(r,t) = T(t)T(r)$ and we get
\begin{equation}
\frac{T''(t)}{T(t)} = \frac{R''(r)}{R(r)} = -\lambda
\end{equation}
Note this is a Dirichlet-Dirichlet boundary eigenvalue problem for R(r) with l = 1, we have
\begin{align}
&\lambda_{n} = (\pi n)^2
&R_{n} = \sin(n\pi r)
&& n = 1, 2, ...
\end{align}
Plug $\lambda$ back to (7), and since $v_t(r,0)=0$
\begin{equation}
T(t) = A_n \cos(n\pi t)
\end{equation}
Therefore
\begin{equation}
v = \sum_{n=1}^{\infty}A_n \cos(n\pi t) \sin(n\pi r)
\end{equation}
We solve the coefficients $A_n$ by
\begin{equation*}
A_n = 2\int_{0}^{1}r\sin n\pi r\,dr = -\frac{2\cos(n\pi)}{n\pi}
\end{equation*}
When $r<1$,
\begin{align*}
&v = \sum_{n=1}^{\infty} (-1)^{n+1}\frac{2}{n\pi}\cos(n\pi t)\sin(n\pi r)\\
&u = \frac{1}{r}\sum_{n=1}^{\infty} (-1)^{n+1}\frac{2}{n\pi}\cos(n\pi t)\sin(n\pi r)
\end{align*}
When $r\geq 1$
\begin{equation*}
u = 0
\end{equation*}
\begin{align*}
&r u_{tt} - (ru_{rr} + 2u_r) = 0\\
&(r u)_{tt} - (r u)_{rr} = 0
\end{align*}
Let
\begin{equation*}
v = ru
\end{equation*}
And we have
\begin{equation}
v_{tt} - v_{rr} = 0
\end{equation}
We translated the boundary conditions as
\begin{align} &v(r,0)=\left\{
\begin{aligned}
&r\quad &&r<1,\\ &0 &&r\ge 1,
\end{aligned}
\right.\qquad v_t(r,0)=0
\end{align}
In addition, we have a boundary condition from the continuity of u:
\begin{equation}
v|_{r=0} = 0
\end{equation}
Since the boundary conditions are spherical symmetric and only depend on $r$ and $t$, we expect the solution to be a function of $r$ and $t$ also. Thus, we separate variables by $v(r,t) = T(t)T(r)$ and we get
\begin{equation}
\frac{T''(t)}{T(t)} = \frac{R''(r)}{R(r)} = -\lambda
\end{equation}
Note this is a Dirichlet-Dirichlet boundary eigenvalue problem for R(r) with l = 1, we have
\begin{align}
&\lambda_{n} = (\pi n)^2
&R_{n} = \sin(n\pi r)
&& n = 1, 2, ...
\end{align}
Plug $\lambda$ back to (7), and since $v_t(r,0)=0$
\begin{equation}
T(t) = A_n \cos(n\pi t)
\end{equation}
Therefore
\begin{equation}
v = \sum_{n=1}^{\infty}A_n \cos(n\pi t) \sin(n\pi r)
\end{equation}
We solve the coefficients $A_n$ by
\begin{equation*}
A_n = 2\int_{0}^{1}r\sin n\pi r\,dr = -\frac{2\cos(n\pi)}{n\pi}
\end{equation*}
When $r<1$,
\begin{align*}
&v = \sum_{n=1}^{\infty} (-1)^{n+1}\frac{2}{n\pi}\cos(n\pi t)\sin(n\pi r)\\
&u = \frac{1}{r}\sum_{n=1}^{\infty} (-1)^{n+1}\frac{2}{n\pi}\cos(n\pi t)\sin(n\pi r)
\end{align*}
When $r\geq 1$
\begin{equation*}
u = 0
\end{equation*}