1
Final Exam / Re: FE-2
« on: December 18, 2015, 11:02:01 PM »
we have $$u(x,t) = \frac{1}{\sqrt{4\pi t}}\int_{0}^{\infty}[e^\frac{-(x-y)^2}{4t} + e^\frac{-(x+y)^2}{4t}]y dy$$
To solve the first part, we get $$ \frac{1}{\sqrt{4\pi t}}\int_{0}^{\infty}e^\frac{-(x-y)^2}{4t}y dy = \frac{1}{\sqrt{4\pi t}}\int_{0}^{\infty}e^\frac{-(x-y)^2}{4t}(y-x) dy + \frac{1}{\sqrt{4\pi t}}x\int_{0}^{\infty}e^\frac{-(x-y)^2}{4t} dy$$
we could integrate the first term, $$\frac{1}{\sqrt{4\pi t}}\int_{0}^{\infty}e^\frac{-(x-y)^2}{4t}(y-x) dy = -\frac{2t}{\sqrt{4\pi t}} e^\frac{-(x-y)^2}{4t}|_{0}^{\infty} = 0 + \frac{2t}{\sqrt{4\pi t}} e^\frac{-x^2}{4t} = \frac{\sqrt{t}}{\sqrt{\pi}} e^\frac{-x^2}{4t}$$
The second term we could substitute $y = x+z\sqrt{4t}$,
$$\frac{x}{\sqrt{\pi}}\int_{\frac{-x}{\sqrt{4t}}}^{\infty} e^{-z^2} dz\\ = \frac{x}{2}[ erf({\infty})-erf({\frac{-x}{\sqrt{4t}}})]$$
For the second part, we get $$ \frac{1}{\sqrt{4\pi t}}\int_{0}^{\infty}e^\frac{-(x+y)^2}{4t}y dy = \frac{1}{\sqrt{4\pi t}}\int_{0}^{\infty}e^\frac{-(x+y)^2}{4t}(y+x) dy - \frac{1}{\sqrt{4\pi t}}x\int_{0}^{\infty}e^\frac{-(x+y)^2}{4t} dy$$
Similarly, we solve first part $$ \frac{1}{\sqrt{4\pi t}}\int_{0}^{\infty}e^\frac{-(x+y)^2}{4t}(y+x) dy=\frac{\sqrt{t}}{\sqrt{\pi}} e^\frac{-x^2}{4t}$$
For the second part, we get $$ - \frac{1}{\sqrt{4\pi t}}x\int_{0}^{\infty}e^\frac{-(x+y)^2}{4t} dy = \frac{x}{2}[ -erf({\infty})+erf({\frac{-x}{\sqrt{4t}}})]$$
Combine all the solutions, we get $$u(x,t) = 2\frac{\sqrt{t}}{\sqrt{\pi}} e^\frac{-x^2}{4t} + x(erf({\frac{-x}{\sqrt{4t}}}))$$
To solve the first part, we get $$ \frac{1}{\sqrt{4\pi t}}\int_{0}^{\infty}e^\frac{-(x-y)^2}{4t}y dy = \frac{1}{\sqrt{4\pi t}}\int_{0}^{\infty}e^\frac{-(x-y)^2}{4t}(y-x) dy + \frac{1}{\sqrt{4\pi t}}x\int_{0}^{\infty}e^\frac{-(x-y)^2}{4t} dy$$
we could integrate the first term, $$\frac{1}{\sqrt{4\pi t}}\int_{0}^{\infty}e^\frac{-(x-y)^2}{4t}(y-x) dy = -\frac{2t}{\sqrt{4\pi t}} e^\frac{-(x-y)^2}{4t}|_{0}^{\infty} = 0 + \frac{2t}{\sqrt{4\pi t}} e^\frac{-x^2}{4t} = \frac{\sqrt{t}}{\sqrt{\pi}} e^\frac{-x^2}{4t}$$
The second term we could substitute $y = x+z\sqrt{4t}$,
$$\frac{x}{\sqrt{\pi}}\int_{\frac{-x}{\sqrt{4t}}}^{\infty} e^{-z^2} dz\\ = \frac{x}{2}[ erf({\infty})-erf({\frac{-x}{\sqrt{4t}}})]$$
For the second part, we get $$ \frac{1}{\sqrt{4\pi t}}\int_{0}^{\infty}e^\frac{-(x+y)^2}{4t}y dy = \frac{1}{\sqrt{4\pi t}}\int_{0}^{\infty}e^\frac{-(x+y)^2}{4t}(y+x) dy - \frac{1}{\sqrt{4\pi t}}x\int_{0}^{\infty}e^\frac{-(x+y)^2}{4t} dy$$
Similarly, we solve first part $$ \frac{1}{\sqrt{4\pi t}}\int_{0}^{\infty}e^\frac{-(x+y)^2}{4t}(y+x) dy=\frac{\sqrt{t}}{\sqrt{\pi}} e^\frac{-x^2}{4t}$$
For the second part, we get $$ - \frac{1}{\sqrt{4\pi t}}x\int_{0}^{\infty}e^\frac{-(x+y)^2}{4t} dy = \frac{x}{2}[ -erf({\infty})+erf({\frac{-x}{\sqrt{4t}}})]$$
Combine all the solutions, we get $$u(x,t) = 2\frac{\sqrt{t}}{\sqrt{\pi}} e^\frac{-x^2}{4t} + x(erf({\frac{-x}{\sqrt{4t}}}))$$