1
Test 2 / Re: Solutions to TT2
« on: November 24, 2015, 04:13:56 PM »
Professor, in problem 4, is equation (4.9) possibly wrong? There was no $\pi$ anywhere, same for the result equation (4.10). I think you forgot $\frac{2}{\pi}$
This section allows you to view all posts made by this member. Note that you can only see posts made in areas you currently have access to.
(e)I will work on this part in a little while. So far I think I have gotten all of the same solutions as Rong Wei.Added my solution below.
For the case of the half-line and Dirichlet boundary condition, we will have the solution: \begin{equation}
u(x,t) = \frac{e^{\alpha{}x + \beta{}t}}{2\sqrt{\pi{}kt}}\int_0^{\infty}[e^{-(x-y)^2/4kt} - e^{-(x+y)^2/4kt}]g(y)dy \end{equation}
In the case of Neumann boundary conditions, we cannot use a similar method.
My questions is about boundary condition. For the general form of 1D wave, there is no v present. We used boundary condition\begin{equation} u_{x=0} = 0 \end{equation}. Here you are asking v. I understand that we need conditions, but why here we need:\begin{equation} u_{x=vt} = something \end{equation} but not \begin{equation} u_{x=ct} = something \end{equation} or \begin{equation} u_{x=0} = something \end{equation}Thanks professor but I understand the process of doing this but not why we need initial condition Ux=vt here but not Ux=0, or similarly when with problems without v, why not use boundary condition Ux=ct?
This is completely incomprehensible. What do you really mean by this charade?
Fei Fan Wu provided almost full explanations. Solution is given by $u=\phi(x+ct)+\psi(x-ct)$ and initial data provide us with $\phi(x)$ and $\psi(x)$ as $x>0$. So $\phi(x+ct)$ is defined as $x+ct>0$ and $\psi(x-ct)$ is defined as $x-ct>0$.
a) $v>c$. Then $x+ct > x-ct >0$ as $x>vt$ ($t>0$). completely defined!
b) $c>v> -c$. Then $x+ct$ as $x>vt$ but $x-ct$ could be less than $0$ so we need to find $\psi(x)$ for negative $x$. For this we need 1 boundary condition. Plug $u$ to it:
\begin{equation}
(\alpha + \beta c) \phi' ((v+c)t) + (\alpha - \beta c )\psi' ((v-c)t) =0,\qquad t>0.
\end{equation}
We can always find $\psi$ out of it except one special case which should be a mentioned.
c) $v<-c$. Then both $x-ct$ and $x+ct$ could be negative and we need to find $\phi(x)$ and $\psi(x)$ as $x<0$. We need two boundary conditions. Plug $u$ into boundary conditions:
\begin{align}
&\phi((v+c)t) + \phi'(v-c)t)=0,\\
$c\phi '( (v+c)t)-c\psi'((v-c)t)=0.
\end{align}
Integrating the second one (never mind, constant $C$ could be safely taken $0$) and comparing with the first one we find that $\phi(x)=\psi(x)=0$ as $x<0$.
QED