1
HA10 / Re: HA10 Problem 3
« on: April 02, 2015, 08:32:49 PM »
My answer
This section allows you to view all posts made by this member. Note that you can only see posts made in areas you currently have access to.
most part code is copied from Chen[/quote]
\begin{equation}
\Delta =\partial_\rho^2 + \frac{2}{\rho}\partial_\rho +
\frac{1}{\rho^2}\Lambda
\end{equation}
with
\begin{equation}
\Lambda:=
\bigl(\partial_{\phi}^2 + \cot(\phi)\partial_\phi \bigr) +\frac{1}{\sin^2(\phi)}\partial_{\theta}^2.
\end{equation}
Plug $u=P(\rho)Y(\phi,\theta)$ into $\Delta u=0$: \begin{equation}
P''(\rho)Y(\phi,\theta) + \frac{2}{\rho}P' (\rho)Y(\phi,\theta) + \frac{1}{\rho^2} P(\rho)\Lambda Y(\phi,\theta)=0
\end{equation}
which could be rewritten as
\begin{equation}
\frac{\rho^2 P''(\rho) + \rho P' (\rho)}{P(\rho)}+
\frac{\Lambda Y(\phi,\theta)}{Y(\phi,\theta)}=0
\end{equation}
and since the first term depends only on $\rho$ and the second only on$\phi, \theta$ we conclude that both are constant:
\begin{align}
\rho^2 P'' +2\rho P' = \lambda P,\\
\Lambda Y(\phi,\theta)=-\lambda Y(\phi,\theta).
\end{align}
The first equation is of Euler type and it has solutions $P:=\rho^l$ iff
$\lambda= l(l+1)$. However if we are considering ball, solution must be infinitely smooth in its center due to some general properties of Laplace equation and this is possible iff $l=0,1,2,\ldots$ and in this case $u$ must be a polynomial of $(x,y,z)$.Which in this case, u depends on $x^2+y^2+z^2$ and $z$
Then suppose that
\begin{align}
u= &z^4 + a (1-x^2-y^2-z^2) + bz^2 (1-x^2-y^2-z^2) + c(1-x^2-y^2-z^2) ^2\\\\
=&z^4 + a (1-x^2-y^2-z^2) + b (z^2-z^2x^2-z^2y^2-z^4) + c(1-x^2-y^2-z^2) ^2
\end{align}
\begin{align}
\Delta u &= u_{xx}+u_{yy}+u_{zz}\\
&=12 z^2 -6a + 2b( 1 -\rho^2 -7 z^2) -6c +20c\rho^2\\\text{Suppose $1-\rho^2-z^2=0$}\\
&=12z^2-6a+2b(-6z^2)-6c+20c(1-z^2)\\
&=12z^2-6a-12bz^2-6c+20c-20cz^2\\
&=(12-12b-20c)z^2-6a-6c=0
\end{align}
Then we have
\begin{align}
12-12b-20c=0\\
-6a-6c=0
\end{align}
Then $a = -c$, $b=1-\frac{5}{3}c$, and c is arbitrary.