1
HA7 / Re: HA7-P6
« on: November 06, 2015, 07:56:52 AM »
part b.
First, we make a partial fourier transform $u(x,y) \mapsto \hat{u}(k,y)$.
Then $\hat{u}_{kk} = -k^2 \hat{u}$.
Thus we have $$\hat{u}_{yy}-k^2\hat{u}=0$$
Solve this ODE, we have $$\hat{u}=A(k)e^{-|k|y}+B(k)e^{|k|y}$$
Since the domain goes to infinity and we don't want the solution to escape to infinity, then $B(k)=0$.
Thus, $$\hat{u}=A(k)e^{-|k|y}$$
Notice $$\hat{u}_y=-|k|\cdot A(k)e^{-|k|y}$$
So we plug in the boundary condition, we get $$\hat{u}_y=-|k|\cdot A(k)=\hat{f}(k) \implies A(k)=-\frac{\hat{f}(k)}{|k|}$$
Thus $$\hat{u} = -\frac{\hat{f}(k)}{|k|}e^{-|k|y}$$
And we write $u$ in a fourier integral form as $$u=\int^{\infty}_{-\infty} -\frac{\hat{f}(k)}{|k|}e^{-|k|y} e^{ikx} dk$$
First, we make a partial fourier transform $u(x,y) \mapsto \hat{u}(k,y)$.
Then $\hat{u}_{kk} = -k^2 \hat{u}$.
Thus we have $$\hat{u}_{yy}-k^2\hat{u}=0$$
Solve this ODE, we have $$\hat{u}=A(k)e^{-|k|y}+B(k)e^{|k|y}$$
Since the domain goes to infinity and we don't want the solution to escape to infinity, then $B(k)=0$.
Thus, $$\hat{u}=A(k)e^{-|k|y}$$
Notice $$\hat{u}_y=-|k|\cdot A(k)e^{-|k|y}$$
So we plug in the boundary condition, we get $$\hat{u}_y=-|k|\cdot A(k)=\hat{f}(k) \implies A(k)=-\frac{\hat{f}(k)}{|k|}$$
Thus $$\hat{u} = -\frac{\hat{f}(k)}{|k|}e^{-|k|y}$$
And we write $u$ in a fourier integral form as $$u=\int^{\infty}_{-\infty} -\frac{\hat{f}(k)}{|k|}e^{-|k|y} e^{ikx} dk$$