1
Final Exam / Re: FE-1
« on: December 18, 2015, 10:37:02 PM »
\begin{equation}
u_{tt}-\frac{1}{2}u_{xx}=0
\end{equation}
\begin{equation}
u(x,t)=\phi(x+\frac{1}{2}t)+\psi(x-\frac{1}{2}t)
\end{equation}
by(2) and (3)
\begin{equation}
\phi(x)+\psi(x)=f(x)=2xe^{-2x^2}\\
\phi(x)-\psi(x)=g(x)=0
\end{equation}
Then
\begin{equation}
\phi(x)=xe^{-2x^2}\\
\psi(x)=xe^{-2x^2}
\end{equation}
Thus for $x>\frac{1}{2}t$
\begin{equation}
\mu(x,t)=(x+\frac{1}{2}t)e^{-2(x+\frac{1}{2}t)^2}+(x-\frac{1}{2}t)e^{-2(x-\frac{1}{2}t)^2}
\end{equation}
Now consider $x<\frac{1}{2}t$
by (4)
\begin{equation}
\phi(\frac{1}{2}t)+\psi(-\frac{1}{2}t)=te^{-t^2/2}
\end{equation}
let $x=-\frac{1}{2}t$, then $t=-2x$
\begin{equation}
\phi(-x)+\psi(x)=-2xe^{-(-2x)^2/2}\\
\psi(x)=-2xe^{-2x^2}-\phi(-x)\\
\psi(x)=-2xe^{-2x^2}+xe^{-2x^2}\\
\psi(x)=-xe^{-2x^2}
\end{equation}
Thus for $x<\frac{1}{2}t$
\begin{equation}
\mu(x,t)=(x+\frac{1}{2}t)e^{-2(x+\frac{1}{2}t)^2}-(x-\frac{1}{2}t)e^{-2(x-\frac{1}{2}t)^2}
\end{equation}
u_{tt}-\frac{1}{2}u_{xx}=0
\end{equation}
\begin{equation}
u(x,t)=\phi(x+\frac{1}{2}t)+\psi(x-\frac{1}{2}t)
\end{equation}
by(2) and (3)
\begin{equation}
\phi(x)+\psi(x)=f(x)=2xe^{-2x^2}\\
\phi(x)-\psi(x)=g(x)=0
\end{equation}
Then
\begin{equation}
\phi(x)=xe^{-2x^2}\\
\psi(x)=xe^{-2x^2}
\end{equation}
Thus for $x>\frac{1}{2}t$
\begin{equation}
\mu(x,t)=(x+\frac{1}{2}t)e^{-2(x+\frac{1}{2}t)^2}+(x-\frac{1}{2}t)e^{-2(x-\frac{1}{2}t)^2}
\end{equation}
Now consider $x<\frac{1}{2}t$
by (4)
\begin{equation}
\phi(\frac{1}{2}t)+\psi(-\frac{1}{2}t)=te^{-t^2/2}
\end{equation}
let $x=-\frac{1}{2}t$, then $t=-2x$
\begin{equation}
\phi(-x)+\psi(x)=-2xe^{-(-2x)^2/2}\\
\psi(x)=-2xe^{-2x^2}-\phi(-x)\\
\psi(x)=-2xe^{-2x^2}+xe^{-2x^2}\\
\psi(x)=-xe^{-2x^2}
\end{equation}
Thus for $x<\frac{1}{2}t$
\begin{equation}
\mu(x,t)=(x+\frac{1}{2}t)e^{-2(x+\frac{1}{2}t)^2}-(x-\frac{1}{2}t)e^{-2(x-\frac{1}{2}t)^2}
\end{equation}