1
Term Test 1 / Re: Problem 4 (afternoon)
« on: October 24, 2019, 01:38:59 PM »
(a) r^2 + 2r + 17 = 0
r1 = -1 + 4i
r2 = -1 - 4i
so, y = c1*(e^(-x))*cos(4x) + c2*(e^(-x))*sin(4x))
yp1 = A*(e^x)
y'p1 = A*(e^x)
y''p1 = A*(e^x)
A*(e^x) + 2*A*(e^x) + 17*A*(e^x) = 40*A*(e^x)
A = 2
so yp1 = 2*(e^x)
yp2 = A*sin(4x) + B*cos(4x)
y'p2 = 4*A*cos(4x) - 4*B*sin(4x)
y''p2 = -16*A*sin(4x) -16*B*cos(4x)
-16Asin(4x) -16Bcos(4x) + 8Acos(4x) -8Bsin(4x) + 17Asin(4x) + 17Bcos(4x) = 130sin(4x)
In this way, we can solve that: A = 2 and B = -16
yp2 = 2sin(4x) -16cos(4x)
y = c1*(e^(-x))cos(4x) + c2*(e^(-x))sin(4x) +2*(e^x) + 2sin(4x) - 16cos(4x)
(b) y' = -C1*(e^(-x))cos(4x) -4C1*(e^(-x))sin(4x) -C2*(e^(-x))sin(4x) + 4C2(e^(-x))cos(4x) + 2*(e^x)+ 8cos(4x) + 64sin(4x)
When y(0) = 0, y'(0) = 0,
so, c1 = 14 c2 = 1
y = 14*(e^(-x))cos(4x) +(e^(-x))sin(4x) +2*(e^x) + 2sin(4x)- 16cos(4x)
r1 = -1 + 4i
r2 = -1 - 4i
so, y = c1*(e^(-x))*cos(4x) + c2*(e^(-x))*sin(4x))
yp1 = A*(e^x)
y'p1 = A*(e^x)
y''p1 = A*(e^x)
A*(e^x) + 2*A*(e^x) + 17*A*(e^x) = 40*A*(e^x)
A = 2
so yp1 = 2*(e^x)
yp2 = A*sin(4x) + B*cos(4x)
y'p2 = 4*A*cos(4x) - 4*B*sin(4x)
y''p2 = -16*A*sin(4x) -16*B*cos(4x)
-16Asin(4x) -16Bcos(4x) + 8Acos(4x) -8Bsin(4x) + 17Asin(4x) + 17Bcos(4x) = 130sin(4x)
In this way, we can solve that: A = 2 and B = -16
yp2 = 2sin(4x) -16cos(4x)
y = c1*(e^(-x))cos(4x) + c2*(e^(-x))sin(4x) +2*(e^x) + 2sin(4x) - 16cos(4x)
(b) y' = -C1*(e^(-x))cos(4x) -4C1*(e^(-x))sin(4x) -C2*(e^(-x))sin(4x) + 4C2(e^(-x))cos(4x) + 2*(e^x)+ 8cos(4x) + 64sin(4x)
When y(0) = 0, y'(0) = 0,
so, c1 = 14 c2 = 1
y = 14*(e^(-x))cos(4x) +(e^(-x))sin(4x) +2*(e^x) + 2sin(4x)- 16cos(4x)