1
Quiz 1 / Re: 0101 quiz1
« on: December 20, 2020, 01:15:56 PM »
$\text{Im}(2iz)=2x=7\Rightarrow x=\frac{7}{2}$ (Typos at this line.)
This section allows you to view all posts made by this member. Note that you can only see posts made in areas you currently have access to.
Question: Using argument principle along line on the picture, calculate the number of zeroes of the following function in the left half-plane:$z+a=e^z, (a>0)$
(Plus: I think Professor Victor originally wants to give us $a>1$ rather than $a>0$?)
(The graph will be attached.)
Solution:
$\begin{align}
h(iy)&=iy+a-e^{iy}\\
&=iy+a-cos(y)-isin(y)\\
&=(a-cos(y))+i(y-sin(y))
\end{align}
$
If $a>0$, we cannot conclude anything for $\text{Re} h(iy)$, but if $a>1$, then $\text{Re} h(iy)$ is always positive because the range of $cos(y)$ is consistently from $-1$ to $1$.
$\text{Im}h(iy)$ will increase when $y$ goes from $-R$ to $R$.
$\begin{align}
h(\text{Re}^{it})=\text{Re}^{it}+a=e^{\text{Re}^{it}}
\end{align}
$
Where t is from $\frac{\pi}{2}$ to $\frac{3\pi}{2}$, and $z$ goes from $iR$ to $-iR$. $h(z)$ in this circumstance has been travelled a counterclockwise circuit.
Therefore, the argument for $h(z)$ should be $2\pi$.
By The Argument Principle, $\frac{1}{2\pi}\cdot 2\pi=1$.
Hence, $h(z)$ has a total of one zero in this plane.