1
Final Exam / problem 4
« on: December 20, 2012, 01:33:07 PM »
Let $u$ solve the initial value problem for the wave equation in one dimension
\begin{equation*}
\left\{\begin{aligned}
& u_{tt}- u_{xx}= 0 ,\qquad&& ~{\mbox{in}} ~\mathbb{R} \times (0,\infty),\\[3pt]
&u (0,x) = f(x), \qquad&& ~{\mbox{on}}~ \mathbb{R} \times \{t=0\} ,\\[3pt]
&u_t(0,x)= g(x), \qquad&& ~{\mbox{on}}~ \mathbb{R} \times \{t=0\} .
\end{aligned}\right.
\end{equation*}
Suppose $f(x)=g(x)=0$ for all $|x|>1000.$ The kinetic energy is
$$
k(t)= \frac{1}{2}\int_{-\infty}^{+\infty} u_t^2 (t,x) dx
$$
and the potential energy is
$$
p(t)= \frac{1}{2}\int_{-\infty}^{+\infty} u_x^2 (t,x) dx.
$$
Prove
problem 4 part (a)
\begin{equation*}
\left\{\begin{aligned}
& u_{tt}- u_{xx}= 0 ,\qquad&& ~{\mbox{in}} ~\mathbb{R} \times (0,\infty),\\[3pt]
&u (0,x) = f(x), \qquad&& ~{\mbox{on}}~ \mathbb{R} \times \{t=0\} ,\\[3pt]
&u_t(0,x)= g(x), \qquad&& ~{\mbox{on}}~ \mathbb{R} \times \{t=0\} .
\end{aligned}\right.
\end{equation*}
Suppose $f(x)=g(x)=0$ for all $|x|>1000.$ The kinetic energy is
$$
k(t)= \frac{1}{2}\int_{-\infty}^{+\infty} u_t^2 (t,x) dx
$$
and the potential energy is
$$
p(t)= \frac{1}{2}\int_{-\infty}^{+\infty} u_x^2 (t,x) dx.
$$
Prove
- $k(t)+ p(t)$ is constant with $t$ (so does not change as $t$ changes),
- $k(t)=p(t)$ for all large enough times $t$.
problem 4 part (a)