1
Term Test 2 / Re: Problem 4 (main sitting)
« on: November 19, 2019, 10:41:19 AM »
4) $x'=\left(\begin{array}{cc}
3 & 3\\
-2 & -1
\end{array}\right)x$
a)
$det(A-\lambda I)=det(\begin{array}{cc}
3-\lambda & 3\\
-2 & -1-\lambda
\end{array})=(3-\lambda)(-1-\lambda)+6=0$
$\lambda^{2}-2\lambda+3=0$
$(\lambda-1)^{2}=-2$
\$\lambda=1\pm\sqrt{2}i$
\$\lambda=1+\sqrt{2}i$
$(\begin{array}{ccc}
2-\sqrt{2}i & 3 & 0\\
-2 & -2-\sqrt{2}i & 0
\end{array}) = (\begin{array}{ccc}
2-\sqrt{2}i & 3 & 0\\
0 & 0 & 0
\end{array}) $
$v=(\begin{array}{c}2+\sqrt{2}i\\-2\end{array})$
$e^{(1+\sqrt{2}i)t}(\begin{array}{c}
2+\sqrt{2}i\\
-2
\end{array})=e^{t}(cos\sqrt{2}t+isin\sqrt{2}t)(\begin{array}{c}2+\sqrt{2}i\\-2\end{array}) = e^{t}(\begin{array}{c}
2cos\sqrt{2}t+2isin\sqrt{2}t+\sqrt{2}icos\sqrt{2}t-\sqrt{2}sin\sqrt{2}t\\
-2cos\sqrt{2}t-2isin\sqrt{2}t
\end{array})=e^{t}(\begin{array}{c}
2cos\sqrt{2}t-\sqrt{2}sin\sqrt{2}t\\
-2cos\sqrt{2}t
\end{array})+ie^{t}(\begin{array}{c}
2isin\sqrt{2}t+\sqrt{2}icos\sqrt{2}t\\
-2isin\sqrt{2}t
\end{array})$
$x(t)=c_{1}e{}^{t}(\begin{array}{c}
2cos\sqrt{2}t-\sqrt{2}sin\sqrt{2}t\\
-2cos\sqrt{2}t
\end{array})+c_{2}e{}^{t}(\begin{array}{c}
2isin\sqrt{2}t+\sqrt{2}icos\sqrt{2}t\\
-2isin\sqrt{2}t
\end{array})$
You should consider real solutions
3 & 3\\
-2 & -1
\end{array}\right)x$
a)
$det(A-\lambda I)=det(\begin{array}{cc}
3-\lambda & 3\\
-2 & -1-\lambda
\end{array})=(3-\lambda)(-1-\lambda)+6=0$
$\lambda^{2}-2\lambda+3=0$
$(\lambda-1)^{2}=-2$
\$\lambda=1\pm\sqrt{2}i$
\$\lambda=1+\sqrt{2}i$
$(\begin{array}{ccc}
2-\sqrt{2}i & 3 & 0\\
-2 & -2-\sqrt{2}i & 0
\end{array}) = (\begin{array}{ccc}
2-\sqrt{2}i & 3 & 0\\
0 & 0 & 0
\end{array}) $
$v=(\begin{array}{c}2+\sqrt{2}i\\-2\end{array})$
$e^{(1+\sqrt{2}i)t}(\begin{array}{c}
2+\sqrt{2}i\\
-2
\end{array})=e^{t}(cos\sqrt{2}t+isin\sqrt{2}t)(\begin{array}{c}2+\sqrt{2}i\\-2\end{array}) = e^{t}(\begin{array}{c}
2cos\sqrt{2}t+2isin\sqrt{2}t+\sqrt{2}icos\sqrt{2}t-\sqrt{2}sin\sqrt{2}t\\
-2cos\sqrt{2}t-2isin\sqrt{2}t
\end{array})=e^{t}(\begin{array}{c}
2cos\sqrt{2}t-\sqrt{2}sin\sqrt{2}t\\
-2cos\sqrt{2}t
\end{array})+ie^{t}(\begin{array}{c}
2isin\sqrt{2}t+\sqrt{2}icos\sqrt{2}t\\
-2isin\sqrt{2}t
\end{array})$
$x(t)=c_{1}e{}^{t}(\begin{array}{c}
2cos\sqrt{2}t-\sqrt{2}sin\sqrt{2}t\\
-2cos\sqrt{2}t
\end{array})+c_{2}e{}^{t}(\begin{array}{c}
2isin\sqrt{2}t+\sqrt{2}icos\sqrt{2}t\\
-2isin\sqrt{2}t
\end{array})$
You should consider real solutions