1
Term Test 2 / Re: Problem 4 (morning)
« on: November 19, 2019, 05:59:51 AM »
a) First we should solve for eigenvalues:
let $det\begin{bmatrix}2-\lambda & -3\\
4 & -2-\lambda
\end{bmatrix}=0.\lambda_{1}=2\sqrt{2}i,\lambda_{2}=-2\sqrt{2}i.$
Second we need to solve for eigenvectors:
Let $(A-\lambda I)v=0.$ When $\lambda=2\sqrt{2}i,v=\begin{bmatrix}\sqrt{2}i+1\\
2
\end{bmatrix}.$
Therefore, $e^{(2\sqrt{2}i)t}\begin{bmatrix}\sqrt{2}i+1\\
2
\end{bmatrix}=(cos(2\sqrt{2}t)+isin(2\sqrt{2}t))\begin{bmatrix}\sqrt{2}i+1\\
2
\end{bmatrix}.$
$x(t)=C_{1}\begin{bmatrix}-\sqrt{2}sin(2\sqrt{2}t)+cos(2\sqrt{2}t)\\
2cos(2\sqrt{2}t)
\end{bmatrix}+C_{2}\begin{bmatrix}\sqrt{2}cos(2\sqrt{2}t)+sin(2\sqrt{2}t)\\
2sin(2\sqrt{2}t)
\end{bmatrix}.$
b) See photo below.
let $det\begin{bmatrix}2-\lambda & -3\\
4 & -2-\lambda
\end{bmatrix}=0.\lambda_{1}=2\sqrt{2}i,\lambda_{2}=-2\sqrt{2}i.$
Second we need to solve for eigenvectors:
Let $(A-\lambda I)v=0.$ When $\lambda=2\sqrt{2}i,v=\begin{bmatrix}\sqrt{2}i+1\\
2
\end{bmatrix}.$
Therefore, $e^{(2\sqrt{2}i)t}\begin{bmatrix}\sqrt{2}i+1\\
2
\end{bmatrix}=(cos(2\sqrt{2}t)+isin(2\sqrt{2}t))\begin{bmatrix}\sqrt{2}i+1\\
2
\end{bmatrix}.$
$x(t)=C_{1}\begin{bmatrix}-\sqrt{2}sin(2\sqrt{2}t)+cos(2\sqrt{2}t)\\
2cos(2\sqrt{2}t)
\end{bmatrix}+C_{2}\begin{bmatrix}\sqrt{2}cos(2\sqrt{2}t)+sin(2\sqrt{2}t)\\
2sin(2\sqrt{2}t)
\end{bmatrix}.$
b) See photo below.