1
Term Test 1 / Re: Problem 1 (main sitting)
« on: October 23, 2019, 04:15:46 PM »
Question 1:
a) Find the integrating find and a general solution.
$y+3y^2e^{2x}+(1+2ye^{2x})y'=0$
$M_y=1+6ye^{2x}$
$N_x=4ye^{2x}$
$R_2=\frac{M_y-N_x}{N}=\frac{1+6ye^{2x}-4ye^{2x}}{1+2ye^{2x}}=1$
$\mu=e^{\int R_2dx}=e^x$
Multiply $\mu$ to both sides
$e^{x}(y+3y^2e^{2x})+e^x(1+2ye^{2x})y'$
$M_y=e^x+e^x6ye^{2x}$
$N_x=e^x+6ye^{3x}$
Since $M_y=N_x$, $x$ is the integrating factor.
$\Phi=\int{M_x}=e^xy+y^2e^{3x}+h(y)$
$\Phi_y=e^x+2ye^{3x}+h’(y)$
$h’(y)=o$
$h(y)=C$
$\therefore e^xy+3y^2e^{3x}+(e^x+2ye^{3x})=C$
b) Find a solution where $y(0)=1$
Sub $y(0)=1$
$e^0(1)+3(1)(e^0)+(e^0+2e^0)=C$
$C=1+3+3=7$
$\therefore e^xy+3y^2e^{3x}+(e^x+2ye^{3x})=7$
a) Find the integrating find and a general solution.
$y+3y^2e^{2x}+(1+2ye^{2x})y'=0$
$M_y=1+6ye^{2x}$
$N_x=4ye^{2x}$
$R_2=\frac{M_y-N_x}{N}=\frac{1+6ye^{2x}-4ye^{2x}}{1+2ye^{2x}}=1$
$\mu=e^{\int R_2dx}=e^x$
Multiply $\mu$ to both sides
$e^{x}(y+3y^2e^{2x})+e^x(1+2ye^{2x})y'$
$M_y=e^x+e^x6ye^{2x}$
$N_x=e^x+6ye^{3x}$
Since $M_y=N_x$, $x$ is the integrating factor.
$\Phi=\int{M_x}=e^xy+y^2e^{3x}+h(y)$
$\Phi_y=e^x+2ye^{3x}+h’(y)$
$h’(y)=o$
$h(y)=C$
$\therefore e^xy+3y^2e^{3x}+(e^x+2ye^{3x})=C$
b) Find a solution where $y(0)=1$
Sub $y(0)=1$
$e^0(1)+3(1)(e^0)+(e^0+2e^0)=C$
$C=1+3+3=7$
$\therefore e^xy+3y^2e^{3x}+(e^x+2ye^{3x})=7$