Show Posts

This section allows you to view all posts made by this member. Note that you can only see posts made in areas you currently have access to.


Messages - Michael Zhang

Pages: [1]
1
Quiz-3 / TUT0302 QUIZ1
« on: October 11, 2019, 03:22:53 PM »
Q: Verify that the functions y_1 and y_2 are solutions of the given differential equation. Do they constitute a fundamental set of solutions?
y”+4y=0
y_1(t)=cos(2t), y_2(t)=sin(2t)

y_1’(t)=-2sin(2t)
y_1”(t)=-4cos(2t)
y_2’(t)=2cos(2t)
y_2”(t)=-4sin(2t)
Plug y_1 into the given equation
-4cos(2t)+4cos(2t)=0
Plug y_2 into the given equation
-4sin(2t)+4sin(2t)=0

So, y_1 and y_2 are solutions of given equation

W= det(y_1,y_2,y_1',y_2') = y_1(t)y_2’(t) – y_2(t)y_1’(t)
=cos(2t)2cos(2t) – sin(2t)(-2)sin(2t)
=2cos^2(2t)+2sin^2(2t)
2[cos^2(2t)+sin^2(2t)]
=2
Since W≠0, it is a fundamental set of solutions

2
Quiz-2 / TUT0302 QUIZ2
« on: October 04, 2019, 02:39:42 PM »
Q: 1+((x/y)-siny)y’= 0

Let M(x,y)=1 , N(x,y)= ((x/y)-siny)
Then, ∂/∂y{M(x,y)}=0 , ∂/∂x{N(x,y)}=1/y
Notice that
(N_x – M_y)/M = 1/y
It contains y only, so
dμ/dy = [(N_x – M_y)/M] μ = μ/y
μ=y
Multiplying original equation by μ(y),we get
y + (x-ysin(y))y’= 0
Now,this equation is exact, since
M_y = N_x
Therefore,
∃φ(x,y) s.t. φ_x = M = y
φ=∫ydx= xy + h(y)
φ_y= x +h’(y)
Also, φ_y=N=x-ysin(y)
So h’(y)=ysin(y)
h(y)= ∫ysin(y) dy=ycos(y)-sin(y)+c
Thus
φ=xy+ ycos(y)-sin(y)=C

Pages: [1]