1
Term Test 2 / Re: Problem 1 (main sitting)
« on: November 19, 2019, 05:43:09 AM »
$\text(a)\\$
$r^2+4=0\\$
$\qquad r=\pm2i\\$
$\therefore y(t)=c_1 \cos{2t}+c_2 \sin{2t}\\$
$W=\begin{vmatrix}
\cos2t & \sin2t \\
-2\sin2t & 2\cos2t \\
\end{vmatrix}=2\\$
$W_1=\begin{vmatrix}
0 & \sin2t \\
1 & 2\cos2t \\
\end{vmatrix}=-\sin2t\\$
$W_2=\begin{vmatrix}
\cos2t & 0 \\
-2\sin2t & 1 \\
\end{vmatrix}=\cos2t\\$
$y_c(t)=\cos2t \int \frac{-\sin2s·\frac{1}{\cos^2{s}}}{2}ds+\sin2t \int \frac{\cos2s·\frac{1}{cos^2{s}}}{2}ds\\$
$\qquad = \frac{1}{2}\cos2t \int \frac{-2sins·coss}{cos^2{s}}ds+\frac{1}{2}\sin2t\int\frac{2cos^2{s}-1}{cos^2{s}}ds\\$
$\qquad =-\cos2t \int tans ds+ \frac{1}{2}\sin2t \int (2-\sec^2{s})ds\\$
$\qquad = \cos2t·\ln (\cos t) + \frac{1}{2}(2t-\tan t)\\$
$y(t)=c_1 \cos{2t}+c_2 \sin{2t}+ \cos2t·\ln (\cos t) + \frac{1}{2}(2t-\tan t)\\$
$\text(b)\\$
$y^{\prime}(t)=-2c_1\sin2t =2c_2\cos2t-2\sin2t·\ln\cos(t)-\cos2t·tant+\cos2t(2t- tant)+\frac{1}{2}\sin2t(2-\sec^2{t})\\$
$y(0)=c_1+\ln1=0 \implies c_1=0\\$
$y^{\prime}(0)=2c_2+(0-\tan0)=0 \implies c_2=0\\$
$\therefore y(t)=\cos2t·\ln (\cos t)+\frac{1}{2}\sin2t(2t-tant)$
$r^2+4=0\\$
$\qquad r=\pm2i\\$
$\therefore y(t)=c_1 \cos{2t}+c_2 \sin{2t}\\$
$W=\begin{vmatrix}
\cos2t & \sin2t \\
-2\sin2t & 2\cos2t \\
\end{vmatrix}=2\\$
$W_1=\begin{vmatrix}
0 & \sin2t \\
1 & 2\cos2t \\
\end{vmatrix}=-\sin2t\\$
$W_2=\begin{vmatrix}
\cos2t & 0 \\
-2\sin2t & 1 \\
\end{vmatrix}=\cos2t\\$
$y_c(t)=\cos2t \int \frac{-\sin2s·\frac{1}{\cos^2{s}}}{2}ds+\sin2t \int \frac{\cos2s·\frac{1}{cos^2{s}}}{2}ds\\$
$\qquad = \frac{1}{2}\cos2t \int \frac{-2sins·coss}{cos^2{s}}ds+\frac{1}{2}\sin2t\int\frac{2cos^2{s}-1}{cos^2{s}}ds\\$
$\qquad =-\cos2t \int tans ds+ \frac{1}{2}\sin2t \int (2-\sec^2{s})ds\\$
$\qquad = \cos2t·\ln (\cos t) + \frac{1}{2}(2t-\tan t)\\$
$y(t)=c_1 \cos{2t}+c_2 \sin{2t}+ \cos2t·\ln (\cos t) + \frac{1}{2}(2t-\tan t)\\$
$\text(b)\\$
$y^{\prime}(t)=-2c_1\sin2t =2c_2\cos2t-2\sin2t·\ln\cos(t)-\cos2t·tant+\cos2t(2t- tant)+\frac{1}{2}\sin2t(2-\sec^2{t})\\$
$y(0)=c_1+\ln1=0 \implies c_1=0\\$
$y^{\prime}(0)=2c_2+(0-\tan0)=0 \implies c_2=0\\$
$\therefore y(t)=\cos2t·\ln (\cos t)+\frac{1}{2}\sin2t(2t-tant)$