1
Term Test 2 / Re: TT2A Problem 2
« on: November 24, 2018, 06:03:47 AM »
For question b
\begin{equation}
F(z) = \frac{1}{z}\int^z_0 f(z^2)dz \\
\end{equation}
Note that
\begin{equation}
f(z) = \sum_{n=0}^{\infty}\frac{1\times 4 \times 7 \dots \times (3n-2)}{3^n n!}z^{n} \\
f(z^2)= \sum_{n=0}^{\infty}\frac{1\times 4 \times 7 \dots \times (3n-2)}{3^n n!}z^{2n} \\
\end{equation}
Then
\begin{align*}
F(z) &= \frac{1}{z}\int \sum_{n=0}^{\infty}\frac{1\times 4 \times 7 \dots \times (3n-2)}{3^n n!}z^{2n} \\
&= \frac{1}{z} \sum_{n=0}^{\infty} \int \frac{1\times 4 \times 7 \dots \times (3n-2)}{3^n n!}z^{2n} \\
&= \frac{1}{z} \sum_{n=0}^{\infty} \frac{1\times 4 \times 7 \dots \times (3n-2)}{3^n n!(2n+1)}z^{2n+1} \\
&= \sum_{n=0}^{\infty} \frac{1\times 4 \times 7 \dots \times (3n-2)}{3^n n!(2n+1)}z^{2n}
\end{align*}
\begin{equation}
F(z) = \frac{1}{z}\int^z_0 f(z^2)dz \\
\end{equation}
Note that
\begin{equation}
f(z) = \sum_{n=0}^{\infty}\frac{1\times 4 \times 7 \dots \times (3n-2)}{3^n n!}z^{n} \\
f(z^2)= \sum_{n=0}^{\infty}\frac{1\times 4 \times 7 \dots \times (3n-2)}{3^n n!}z^{2n} \\
\end{equation}
Then
\begin{align*}
F(z) &= \frac{1}{z}\int \sum_{n=0}^{\infty}\frac{1\times 4 \times 7 \dots \times (3n-2)}{3^n n!}z^{2n} \\
&= \frac{1}{z} \sum_{n=0}^{\infty} \int \frac{1\times 4 \times 7 \dots \times (3n-2)}{3^n n!}z^{2n} \\
&= \frac{1}{z} \sum_{n=0}^{\infty} \frac{1\times 4 \times 7 \dots \times (3n-2)}{3^n n!(2n+1)}z^{2n+1} \\
&= \sum_{n=0}^{\infty} \frac{1\times 4 \times 7 \dots \times (3n-2)}{3^n n!(2n+1)}z^{2n}
\end{align*}