1
Final Exam / Re: FE-P4
« on: December 18, 2018, 01:15:39 PM »
(a)
Let ${\rm f}\left({\rm z}\right){\rm =}\lambda \frac{a-z}{1-\overline{a}z}$ , $\left|\lambda \right|{\rm =1}$
${\rm where\ }\lambda {\rm =1}{{\rm e}}^{{\rm it}}, {\rm a=}{{\rm re}}^{{\rm i}\theta }$
Then
${\rm f}\left(0\right){\rm =}\lambda \frac{a-0}{1-\overline{a}0}=\lambda a=\frac{1}{2}\ \ \Rightarrow a=\frac{1}{2}e^{i \theta}$
${\rm f}\left({\rm 1}\right){\rm =}{{\rm e}}^{{\rm it}}\frac{\frac{1}{2}e^{i \theta}-1}{1-\frac{1}{2}e^{-i \theta}}\ \Rightarrow \frac{1}{2}-e^{it}=-1+\frac{1}{2}e^{-i \theta}\Rightarrow t= \theta =0$
Thus $\lambda {\rm =1,\ a=}\frac{{\rm 1}}{{\rm 2}}$
Then ${\rm f}\left({\rm z}\right){\rm =}\lambda \frac{a-z}{1-\overline{a}z}=\frac{\frac{1}{2}-z}{1-\frac{1}{2}z}=\frac{1-2z}{2-z}$
(b)
${\rm f}\left({\rm z}\right)=\frac{1-2z}{2-z}=z\ \Rightarrow z^2-4z+1=0\Rightarrow z=2\pm \ \sqrt{3}$
Then the fixed points are $z=2\pm \ \sqrt{3}$
(c)
${\rm f}\left({\rm z}\right){\rm =}\frac{1-2z}{2-z}$
Then
${{\rm f}}^{{\rm '}}\left({\rm z}\right){\rm =}\frac{-2\left(2-z\right)+\left(1-2z\right)}{{\left(2-z\right)}^2}=\frac{-3}{{\left(2-z\right)}^2}$
Then
${{\rm |f}}^{{\rm '}}\left({\rm z}\right)|=\left|\frac{-3}{{\left(2-z\right)}^2}\right|=\frac{3}{{\left(2-z\right)}^2}$
${\arg \left(f\left(z\right)\right)\ }={\arg \left(\frac{-3}{(2-z)(2-z)}\right)\ }={\arg \left(-1\right)} - {\arg \frac{{\left(2-z\right)}^2}{3}}={\pi} - {\arg \frac{{\left(2-z\right)}^2}{3}}$
Let ${\rm f}\left({\rm z}\right){\rm =}\lambda \frac{a-z}{1-\overline{a}z}$ , $\left|\lambda \right|{\rm =1}$
${\rm where\ }\lambda {\rm =1}{{\rm e}}^{{\rm it}}, {\rm a=}{{\rm re}}^{{\rm i}\theta }$
Then
${\rm f}\left(0\right){\rm =}\lambda \frac{a-0}{1-\overline{a}0}=\lambda a=\frac{1}{2}\ \ \Rightarrow a=\frac{1}{2}e^{i \theta}$
${\rm f}\left({\rm 1}\right){\rm =}{{\rm e}}^{{\rm it}}\frac{\frac{1}{2}e^{i \theta}-1}{1-\frac{1}{2}e^{-i \theta}}\ \Rightarrow \frac{1}{2}-e^{it}=-1+\frac{1}{2}e^{-i \theta}\Rightarrow t= \theta =0$
Thus $\lambda {\rm =1,\ a=}\frac{{\rm 1}}{{\rm 2}}$
Then ${\rm f}\left({\rm z}\right){\rm =}\lambda \frac{a-z}{1-\overline{a}z}=\frac{\frac{1}{2}-z}{1-\frac{1}{2}z}=\frac{1-2z}{2-z}$
(b)
${\rm f}\left({\rm z}\right)=\frac{1-2z}{2-z}=z\ \Rightarrow z^2-4z+1=0\Rightarrow z=2\pm \ \sqrt{3}$
Then the fixed points are $z=2\pm \ \sqrt{3}$
(c)
${\rm f}\left({\rm z}\right){\rm =}\frac{1-2z}{2-z}$
Then
${{\rm f}}^{{\rm '}}\left({\rm z}\right){\rm =}\frac{-2\left(2-z\right)+\left(1-2z\right)}{{\left(2-z\right)}^2}=\frac{-3}{{\left(2-z\right)}^2}$
Then
${{\rm |f}}^{{\rm '}}\left({\rm z}\right)|=\left|\frac{-3}{{\left(2-z\right)}^2}\right|=\frac{3}{{\left(2-z\right)}^2}$
${\arg \left(f\left(z\right)\right)\ }={\arg \left(\frac{-3}{(2-z)(2-z)}\right)\ }={\arg \left(-1\right)} - {\arg \frac{{\left(2-z\right)}^2}{3}}={\pi} - {\arg \frac{{\left(2-z\right)}^2}{3}}$