1
Final Exam / Re: FE-P3
« on: December 18, 2018, 11:13:44 AM »
f(z) = $\frac{\mathrm{sin}\mathrm{}(z)}{\mathrm{cos}\mathrm{}(z)}+z\frac{\mathrm{cos}\mathrm{}\wedge 2(z)}{\mathrm{sin}\mathrm{}\wedge 2(z)}$
=$ \frac{{{\mathrm{sin}}^{\mathrm{3}}\left(z\right) +\ }{\mathrm{zcos}}^{\mathrm{3}}\left(z\right)\ \ \ \ =g}{{\mathrm{cos} \left(z\right)\ }{sin}^2\left(z\right)\ \ \ \ =h}$
Cos(z)sin$\mathrm{\wedge}$2(z) = 0
cos(z) = 0 or sin$\mathrm{\wedge}$2(z) = 0
so z =k$\pi $ or $z=\frac{\pi }{2}+k\pi $
1, when z = k$\pi $
g = ${sin}^3(z)+z{cos}^3\left(z\right)\neq 0$ h= ${\mathrm{cos} \left(z\right)\ }{sin}^2\left(z\right)=0$
$h^`=-{sin}^3\left(z\right)+2{cos}^2\left(z\right){\mathrm{sin} \left(z\right)\ }=0$ ${\ h}^{''}\neq 0$
So pole of order = 2
2, when z =$\frac{\pi }{2}+k\pi $
g = ${sin}^3(z)+z{cos}^3\left(z\right)\neq 0$ h= ${\mathrm{cos} \left(z\right)\ }{sin}^2\left(z\right)=0$
$h^`=-{sin}^3\left(z\right)+2{cos}^2\left(z\right){\mathrm{sin} \left(z\right)\ }\ \neq 0$
So pole of order = 1
=$ \frac{{{\mathrm{sin}}^{\mathrm{3}}\left(z\right) +\ }{\mathrm{zcos}}^{\mathrm{3}}\left(z\right)\ \ \ \ =g}{{\mathrm{cos} \left(z\right)\ }{sin}^2\left(z\right)\ \ \ \ =h}$
Cos(z)sin$\mathrm{\wedge}$2(z) = 0
cos(z) = 0 or sin$\mathrm{\wedge}$2(z) = 0
so z =k$\pi $ or $z=\frac{\pi }{2}+k\pi $
1, when z = k$\pi $
g = ${sin}^3(z)+z{cos}^3\left(z\right)\neq 0$ h= ${\mathrm{cos} \left(z\right)\ }{sin}^2\left(z\right)=0$
$h^`=-{sin}^3\left(z\right)+2{cos}^2\left(z\right){\mathrm{sin} \left(z\right)\ }=0$ ${\ h}^{''}\neq 0$
So pole of order = 2
2, when z =$\frac{\pi }{2}+k\pi $
g = ${sin}^3(z)+z{cos}^3\left(z\right)\neq 0$ h= ${\mathrm{cos} \left(z\right)\ }{sin}^2\left(z\right)=0$
$h^`=-{sin}^3\left(z\right)+2{cos}^2\left(z\right){\mathrm{sin} \left(z\right)\ }\ \neq 0$
So pole of order = 1