1
Quiz-7 / Re: Q7 TUT 5101
« on: November 30, 2018, 04:12:50 PM »
$1. f(z)=2z^{4}-2iz^{5}+z^{2}+2iz-1$
$f(x)=2x^{4}-3ix^{3}+x^{2}+2ix-1$
$x: [-\infty, \infty]$
$f(-\infty)\rightarrow \infty$
$f(\infty)\rightarrow \infty$ arg$(f(z))=0$
2. $Re^{it}$ $0\leq t \leq \pi$
$f(t)=2R^{4}e^{i4t}- 2iR^{3}e^{i3t}+R^{2}e^{i2t}+2iRe^{it}-1$
$0\leq 4t \leq 4\pi$ arg$(f(z))=4\pi$
The net change of argument is $4\pi$ , so that there are four solutions
$f(x)=2x^{4}-3ix^{3}+x^{2}+2ix-1$
$x: [-\infty, \infty]$
$f(-\infty)\rightarrow \infty$
$f(\infty)\rightarrow \infty$ arg$(f(z))=0$
2. $Re^{it}$ $0\leq t \leq \pi$
$f(t)=2R^{4}e^{i4t}- 2iR^{3}e^{i3t}+R^{2}e^{i2t}+2iRe^{it}-1$
$0\leq 4t \leq 4\pi$ arg$(f(z))=4\pi$
The net change of argument is $4\pi$ , so that there are four solutions