1
Quiz-3 / Re: Q3 TUT 0102
« on: October 12, 2018, 08:56:26 PM »
Let $z = x + iy$
Then $w$ can be rewritten as:
$
w = e^{(x+iy)(x+iy)} \\
w = e^{(x^2-y^2+i2xy)} \\
w = e^{x^2-y^2}(\cos(2xy) + i\sin(2xy)) \\
$
Now find the modulus of $w$
$
|w| = |e^{x^2-y^2}\cos(2xy) + ie^{x^2-y^2}\sin(2xy))| \\
|w| = e^{x^2-y^2}\sqrt{\cos^2(2xy)+\sin^2(2xy)} \\
|w| = e^{x^2-y^2} \\
$
- Now note that when you consider the line ${x=y}$:
$
|w| = e^{x^2-x^2} \\
|w| = e^0 \\
|w| = 1
$
- And similarly on the line ${x=-y}$:
$
|w| = e^{(-y)^2-y^2} \\
|w| = e^0 \\
|w| = 1
$
- For the region $\{x+iy : x^2 > y^2\}$:
$|w| = e^{x^2-y^2} > e^0 > 1$
- And finally for the region $\{x+iy : x^2 < y^2\}$:
$|w| = e^{x^2-y^2} < e^0 < 1$
EDIT: I dunno why, but my drawing attachment appears sideways to me in the preview. If you download it or right click and open the link in a new tab it looks okay though.
Then $w$ can be rewritten as:
$
w = e^{(x+iy)(x+iy)} \\
w = e^{(x^2-y^2+i2xy)} \\
w = e^{x^2-y^2}(\cos(2xy) + i\sin(2xy)) \\
$
Now find the modulus of $w$
$
|w| = |e^{x^2-y^2}\cos(2xy) + ie^{x^2-y^2}\sin(2xy))| \\
|w| = e^{x^2-y^2}\sqrt{\cos^2(2xy)+\sin^2(2xy)} \\
|w| = e^{x^2-y^2} \\
$
- Now note that when you consider the line ${x=y}$:
$
|w| = e^{x^2-x^2} \\
|w| = e^0 \\
|w| = 1
$
- And similarly on the line ${x=-y}$:
$
|w| = e^{(-y)^2-y^2} \\
|w| = e^0 \\
|w| = 1
$
- For the region $\{x+iy : x^2 > y^2\}$:
$|w| = e^{x^2-y^2} > e^0 > 1$
- And finally for the region $\{x+iy : x^2 < y^2\}$:
$|w| = e^{x^2-y^2} < e^0 < 1$
EDIT: I dunno why, but my drawing attachment appears sideways to me in the preview. If you download it or right click and open the link in a new tab it looks okay though.