1
Term Test 2 / Re: TT2-P3
« on: November 22, 2018, 02:24:55 PM »
a)
\begin{equation*}
A-\lambda I=\begin{pmatrix}
2-\lambda & 1\\
-3 & -2-\lambda
\end{pmatrix}
\end{equation*}
\begin{equation*}
\det(A-\lambda I)=(2-\lambda)(-2-\lambda)+3=0
\end{equation*}
\begin{equation*}
\end{equation*}
\begin{equation*}
\lambda_1=1~~~~\lambda_2=-1
\end{equation*}
When $\lambda_1=1$
\begin{equation*}
x_1+x_2=0
\end{equation*}
The first eigenvector is $\begin{pmatrix}
1\\
-1
\end{pmatrix}$
When $\lambda_1=-1$
\begin{equation*}
3x_1+x_2=0
\end{equation*}
The second eigenvector is $\begin{pmatrix}
1\\
-3
\end{pmatrix}$
So, the general solution is $y=C_1e^t\begin{pmatrix}
1\\
-1
\end{pmatrix}+C_2e^{-t}\begin{pmatrix}
1\\
-3
\end{pmatrix}$
b) unstable, saddle point
graph in attachment
c)
\begin{equation*}
\phi=\begin{pmatrix}
e^t&e{-t}\\
-e^t&-3e^{-t}
\end{pmatrix}
\end{equation*}
\begin{equation*}
\begin{pmatrix}
e^t&e{-t}\\
-e^t&-3e^{-t}
\end{pmatrix}\begin{pmatrix}
U_1\\
U_2
\end{pmatrix}=\begin{pmatrix}
\frac{4}{e^t+e^{-t}}\\
\frac{-12}{e^t+e^{-t}}
\end{pmatrix}
\end{equation*}
\begin{equation*}
e^tU_1+e^{-t}U_2=\frac{4}{e^t+e^{-t}}
\end{equation*}
\begin{equation*}
-e^tU_1-3e^{-t}U_2= \frac{-12}{e^t+e^{-t}}
\end{equation*}
\begin{equation*}
U_2= \frac{4}{1+e^{-2t}}-e^{2t}U_1
\end{equation*}
\begin{equation*}
-e^tU_1-3e^{-t}(\frac{4}{1+e^{-2t}}-e^{2t}U_1)=\frac{-12}{e^t+e^{-t}}
\end{equation*}
\begin{equation*}
U_1=0~~~U_2=\frac{4}{1+e^{-2t}}
\end{equation*}
\begin{equation*}
V_1=\int U_1dt=\int0dt=0
\end{equation*}
\begin{equation*}
V_2=\int U_2dt=\int\frac{4}{1+e^{-2t}}dt=2ln(1+e^{2t})
\end{equation*}
\begin{equation*}\begin{pmatrix}
x_1\\
x_2
\end{pmatrix}=\begin{pmatrix}
C_1e^t+C_2e^{-t}+2e{-t}ln(1+e^{2t}\\
-C_1e^t-3C_2e^{-t}-6e{-t}ln(1+e^{2t}
\end{pmatrix}
\end{equation*}
since $\begin{equation*}x(0)=\begin{pmatrix}
0\\
0
\end{pmatrix}
\end{equation*}$
\begin{equation*}
C_1+C_2+2ln2=0~~~-C_1-3C_2-6ln2=0
\end{equation*}\begin{equation*}
C_1=0~~~C_2=-2ln2
\end{equation*}
\begin{equation*}
A-\lambda I=\begin{pmatrix}
2-\lambda & 1\\
-3 & -2-\lambda
\end{pmatrix}
\end{equation*}
\begin{equation*}
\det(A-\lambda I)=(2-\lambda)(-2-\lambda)+3=0
\end{equation*}
\begin{equation*}
\end{equation*}
\begin{equation*}
\lambda_1=1~~~~\lambda_2=-1
\end{equation*}
When $\lambda_1=1$
\begin{equation*}
x_1+x_2=0
\end{equation*}
The first eigenvector is $\begin{pmatrix}
1\\
-1
\end{pmatrix}$
When $\lambda_1=-1$
\begin{equation*}
3x_1+x_2=0
\end{equation*}
The second eigenvector is $\begin{pmatrix}
1\\
-3
\end{pmatrix}$
So, the general solution is $y=C_1e^t\begin{pmatrix}
1\\
-1
\end{pmatrix}+C_2e^{-t}\begin{pmatrix}
1\\
-3
\end{pmatrix}$
b) unstable, saddle point
graph in attachment
c)
\begin{equation*}
\phi=\begin{pmatrix}
e^t&e{-t}\\
-e^t&-3e^{-t}
\end{pmatrix}
\end{equation*}
\begin{equation*}
\begin{pmatrix}
e^t&e{-t}\\
-e^t&-3e^{-t}
\end{pmatrix}\begin{pmatrix}
U_1\\
U_2
\end{pmatrix}=\begin{pmatrix}
\frac{4}{e^t+e^{-t}}\\
\frac{-12}{e^t+e^{-t}}
\end{pmatrix}
\end{equation*}
\begin{equation*}
e^tU_1+e^{-t}U_2=\frac{4}{e^t+e^{-t}}
\end{equation*}
\begin{equation*}
-e^tU_1-3e^{-t}U_2= \frac{-12}{e^t+e^{-t}}
\end{equation*}
\begin{equation*}
U_2= \frac{4}{1+e^{-2t}}-e^{2t}U_1
\end{equation*}
\begin{equation*}
-e^tU_1-3e^{-t}(\frac{4}{1+e^{-2t}}-e^{2t}U_1)=\frac{-12}{e^t+e^{-t}}
\end{equation*}
\begin{equation*}
U_1=0~~~U_2=\frac{4}{1+e^{-2t}}
\end{equation*}
\begin{equation*}
V_1=\int U_1dt=\int0dt=0
\end{equation*}
\begin{equation*}
V_2=\int U_2dt=\int\frac{4}{1+e^{-2t}}dt=2ln(1+e^{2t})
\end{equation*}
\begin{equation*}\begin{pmatrix}
x_1\\
x_2
\end{pmatrix}=\begin{pmatrix}
C_1e^t+C_2e^{-t}+2e{-t}ln(1+e^{2t}\\
-C_1e^t-3C_2e^{-t}-6e{-t}ln(1+e^{2t}
\end{pmatrix}
\end{equation*}
since $\begin{equation*}x(0)=\begin{pmatrix}
0\\
0
\end{pmatrix}
\end{equation*}$
\begin{equation*}
C_1+C_2+2ln2=0~~~-C_1-3C_2-6ln2=0
\end{equation*}\begin{equation*}
C_1=0~~~C_2=-2ln2
\end{equation*}