1
Final Exam / Re: FE-P2
« on: December 14, 2018, 09:28:44 AM »
I think Cui calculated the homogeneous solution wrong:
$(r-1)(r-1)(r-1) = r^3 -3r^2+3r+1$
Actually:
$r^3 -3r^2+4r-2= (r-1)(r^2-2r-2)$ = 0
$r=1$ or $r=1-i, 1+i$
So, Homogeneous solution is
$y= c_1e^t + c_2e^t\cos(t) + c_3e^t\sin(t)$
Non homogenous part for $10e^t$
We should assume $Y= Ate^t $
$Y’=Ate^t+Ae^t$
$Y’’=Ate^t+2Ae^t$
$Y’’’=Ate^t+3Ae^t$
$Y’’’-3Y’’+4Y’-2Y =(A-3A+4A-2A)te^t+(3A-6A+4A-2A)e^t =-Ae^t =10e^t$
$A =-10, Y=-10te^t$
$(r-1)(r-1)(r-1) = r^3 -3r^2+3r+1$
Actually:
$r^3 -3r^2+4r-2= (r-1)(r^2-2r-2)$ = 0
$r=1$ or $r=1-i, 1+i$
So, Homogeneous solution is
$y= c_1e^t + c_2e^t\cos(t) + c_3e^t\sin(t)$
Non homogenous part for $10e^t$
We should assume $Y= Ate^t $
$Y’=Ate^t+Ae^t$
$Y’’=Ate^t+2Ae^t$
$Y’’’=Ate^t+3Ae^t$
$Y’’’-3Y’’+4Y’-2Y =(A-3A+4A-2A)te^t+(3A-6A+4A-2A)e^t =-Ae^t =10e^t$
$A =-10, Y=-10te^t$