1
End of Semester Bonus--sample problem for FE / Re: FE Sample--Problem 2
« on: December 01, 2018, 09:33:23 PM »
(b)
when $ x = p$
$ u(b,y) = \cos b \cosh y = A \cosh y $
$ v(b,y) = -\sin b \sinh y = B \sinh y $
$ \frac{u}{A} = \cosh y $
$ \frac{v}{B} = \sinh y $
$ \frac{u^2}{A^2} - \frac{v^2}{B^2} = (\cosh y)^2 - (\sinh y)^2 = 1 $ with $ A^2 + B^2 = (\cos b)^2 + (\sin b)^2 = 1 $
$A = \cos b$
$B = -\sin b $
when $ x = p$
$ u(b,y) = \cos b \cosh y = A \cosh y $
$ v(b,y) = -\sin b \sinh y = B \sinh y $
$ \frac{u}{A} = \cosh y $
$ \frac{v}{B} = \sinh y $
$ \frac{u^2}{A^2} - \frac{v^2}{B^2} = (\cosh y)^2 - (\sinh y)^2 = 1 $ with $ A^2 + B^2 = (\cos b)^2 + (\sin b)^2 = 1 $
$A = \cos b$
$B = -\sin b $