1
Quiz-6 / Re: Q6 TUT 5101
« on: November 17, 2018, 08:50:29 PM »
When $e^{2z}-1=0 \to e^{z}=1$ then $z=2n\pi i$ and $(2n+1)\pi i$
When $z=2n\pi i,$
$f(2n\pi i)=e^{z}-1=0$
$f'(2n\pi i)=e^{z}\ne 0$
Therefore $f(z)$ at $2n\pi i$ is of order 1
$g(2n\pi i)=e^{2z}-1=0$
$g'(2n\pi i)=2e^{2z}\ne 0$
Therefore $g(z)$ at $2n\pi i $ is of order 1
We have removable singularity at $2n\pi i$ with value of $\frac{1}{2}
$
$f(2n\pi i)=\lim _{z\to 2n\pi i}\frac{e^{z}-1}{e^{2z}-1}=\frac{1}{2}$
When $z=(2n+1)\pi i,$
$f((2n+1)\pi i)=e^{z}-1\ne 0$
Therefore $f(z)$ at $((2n+1)\pi i)$ is of order zero
$g((2n+1)\pi i)=e^{2z}-1=0$
$g'((2n+1)\pi i)=2e^{2z}\ne 0$
Therefore $g(z)$ at ($(2n+1)\pi i) $ is of order 1
We have poles at $((2n+1)\pi i)$ of order 1 because order of $
g(z)-f(z)=1$ so simple poles.
When $z=2n\pi i,$
$f(2n\pi i)=e^{z}-1=0$
$f'(2n\pi i)=e^{z}\ne 0$
Therefore $f(z)$ at $2n\pi i$ is of order 1
$g(2n\pi i)=e^{2z}-1=0$
$g'(2n\pi i)=2e^{2z}\ne 0$
Therefore $g(z)$ at $2n\pi i $ is of order 1
We have removable singularity at $2n\pi i$ with value of $\frac{1}{2}
$
$f(2n\pi i)=\lim _{z\to 2n\pi i}\frac{e^{z}-1}{e^{2z}-1}=\frac{1}{2}$
When $z=(2n+1)\pi i,$
$f((2n+1)\pi i)=e^{z}-1\ne 0$
Therefore $f(z)$ at $((2n+1)\pi i)$ is of order zero
$g((2n+1)\pi i)=e^{2z}-1=0$
$g'((2n+1)\pi i)=2e^{2z}\ne 0$
Therefore $g(z)$ at ($(2n+1)\pi i) $ is of order 1
We have poles at $((2n+1)\pi i)$ of order 1 because order of $
g(z)-f(z)=1$ so simple poles.