1
Final Exam / Re: FE-P1
« on: December 14, 2018, 12:25:45 PM »
$M = 2x \sin(y) +1 $
$N = 4 x^2 \cos(y) + 3x \cot(y) + 5 \sin(2y) $
$M_y = 2x\cos(y)$
$N_x = 8x\cos(y) + 3cos(y)$
$\frac{M_y - N_x} {M} = \frac{-6x\cos(y) - 3cos(y)}{2x\sin(y) + 1} = -3\cot(y)$
$\mu = e^{-\int -3\cot(y) dy } = \sin^3(y)$
Then multiply $sin^3(y)$ on M and N.
Then we get $M = sin^3(y)(2x \sin(y) +1)$, $N =sin^3(y)(4 x^2 \cos(y) + 3x \cot(y) + 5 \sin(2y))$
$M_y = \sin^2(y) \cos(y) (8x \sin(y) + 3) $, and $N_x = \sin^2(y) \cos(y) (8x \sin(y) + 3) $
Thus $M_y = N_x$, exact.
Then $\psi_x = M$
$\psi = \int M dx = \int \sin^3(y)(2x \sin(y) +1) dx = \sin^3(y)(x^2\sin(y) + x) + h(y) $
$N = \psi_y = 4x^2\sin^3(y)\cos(y) + x\sin^2(y)\cos(y) + h'(y) $
$h'(y) = 10\sin^4cos(y) $
$h(y) = \int 10\sin^4cos(y) dy = 2\sin^5(y) + c$
Then $\psi = \sin^3(y)(x^2\sin(y) + x) + 2\sin^5(y) = c$
$N = 4 x^2 \cos(y) + 3x \cot(y) + 5 \sin(2y) $
$M_y = 2x\cos(y)$
$N_x = 8x\cos(y) + 3cos(y)$
$\frac{M_y - N_x} {M} = \frac{-6x\cos(y) - 3cos(y)}{2x\sin(y) + 1} = -3\cot(y)$
$\mu = e^{-\int -3\cot(y) dy } = \sin^3(y)$
Then multiply $sin^3(y)$ on M and N.
Then we get $M = sin^3(y)(2x \sin(y) +1)$, $N =sin^3(y)(4 x^2 \cos(y) + 3x \cot(y) + 5 \sin(2y))$
$M_y = \sin^2(y) \cos(y) (8x \sin(y) + 3) $, and $N_x = \sin^2(y) \cos(y) (8x \sin(y) + 3) $
Thus $M_y = N_x$, exact.
Then $\psi_x = M$
$\psi = \int M dx = \int \sin^3(y)(2x \sin(y) +1) dx = \sin^3(y)(x^2\sin(y) + x) + h(y) $
$N = \psi_y = 4x^2\sin^3(y)\cos(y) + x\sin^2(y)\cos(y) + h'(y) $
$h'(y) = 10\sin^4cos(y) $
$h(y) = \int 10\sin^4cos(y) dy = 2\sin^5(y) + c$
Then $\psi = \sin^3(y)(x^2\sin(y) + x) + 2\sin^5(y) = c$