4
« on: November 17, 2018, 04:21:46 PM »
\begin{equation*}
det
\begin{pmatrix}
-3\lambda &0 &2 \\
1 & -1\lambda &0 \\
-2 & -1 & -\lambda
\end{pmatrix}
=-\lambda^3-4\lambda^2-7\lambda-6=-(\lambda+2)(\lambda+2\lambda+3)=0
\end{equation*}
$$
\lambda=-2,\lambda=\sqrt{2}\qquad i-1,\lambda=-\sqrt{2}\qquad i-1
$$
when $\lambda$=-2
\begin{equation*}
\begin{pmatrix}
-1 &0 &2 \\
1 & 1 &0 \\
-2 & -1 & 2
\end{pmatrix}
\begin{pmatrix}
x_1 \\ x_2 \\ x_3
\end{pmatrix}=0
\end{equation*}
$$
\text{let } x_3=t,x_1=2t,x_2=-2t,
x=
\begin{pmatrix}
2 \\ -2 \\ 1
\end{pmatrix}t
$$
when $\lambda=\sqrt{2}\qquad i-1$
\begin{equation*}
\begin{pmatrix}
-2-\sqrt{2}\qquad i &0 &2 \\
1 & \sqrt{2}\qquad i &0 \\
-2 & -1 & -\sqrt{2}\qquad i+1
\end{pmatrix}
\begin{pmatrix}
x_1 \\ x_2 \\ x_3
\end{pmatrix}
=0
\end{equation*}
$$
x=\begin{pmatrix} \frac{2}{3}-\frac{i\sqrt{2}\qquad}{3}\\\frac{-1}{3}-\frac{i\sqrt{2}\qquad}{3} \\1 \end{pmatrix}t
$$
\begin{equation*}
x(t)=c_1e^{-2t}
\begin{pmatrix}
2\\-2\\1
\end{pmatrix}
+c_2e^{-t}
\begin{pmatrix}
\frac{2}{3}\cos \sqrt{2}\theta+\frac{\sqrt{2}}{3}\sin \sqrt{2}\theta\\
-\frac{1}{3}\cos \sqrt{2}\theta+\frac{\sqrt{2}}{3}\sin \sqrt{2}\theta\\
\cos\sqrt{2}\theta
\end{pmatrix}
+c_3e^{-t}i
\begin{pmatrix}
\frac{2}{3}\sin \sqrt{2}\theta-\frac{\sqrt{2}}{3}\cos \sqrt{2}\theta\\
-\frac{1}{3}\sin \sqrt{2}\theta+\frac{\sqrt{2}}{3}\cos \sqrt{2}\theta\\
\sin\sqrt{2}\theta
\end{pmatrix}
\end{equation*}