1
Term Test 1 / Re: TT1 Problem 4 (main)
« on: October 16, 2018, 08:46:34 AM »
First find the complementary solution for the homogenous equation:
y''(t)+2y'(t)+5y(t) = 8e-t +34sin(2t)
We use the characteristic equation:
r2+2r+5=0
Finding the roots we get:
-1+/-2i
Therefore our yc= c1e-tcos(2t) + c2e-tsin(2t)
Particular Solutions:
8e-t:
Assume: y=Ae-t then:
y'=-Ae-t
y'' =Ae-t
Then:
Ae-t-2Ae-t+5Ae-t=8e-t
A-2A+5A=8
4A=8
A=2
34sin(2t):
Assume y=K1cos(2t)+K2sin(2t)
y'=-2K1sin(2t)+2K2cos(2t)
y''=-4K1cos(2t)-4K2sin(2t)
Then:
-4K1cos(2t)-4K2sin(2t)-4K1sin(2t)+4K2cos(2t)+5K1cos(2t)+5K2sin(2t)=34sin(2t)
Break into components:
Cosine:
-4K1+4K2+5K1=0
4K2+K1=0
K1=-4K2
Sine:
-4K2-4K1+5K2=34
K2-4K1=34
K2-4(-4K2)=34
17K2=34
K2=34/17
K2=2
now:
K1=-4(2)
K1=-8
Therefore:
y= c1e-tcos(2t) + c2e-tsin(2t) + 2e-t + -8cos(2t)+2sin(2t)
y''(t)+2y'(t)+5y(t) = 8e-t +34sin(2t)
We use the characteristic equation:
r2+2r+5=0
Finding the roots we get:
-1+/-2i
Therefore our yc= c1e-tcos(2t) + c2e-tsin(2t)
Particular Solutions:
8e-t:
Assume: y=Ae-t then:
y'=-Ae-t
y'' =Ae-t
Then:
Ae-t-2Ae-t+5Ae-t=8e-t
A-2A+5A=8
4A=8
A=2
34sin(2t):
Assume y=K1cos(2t)+K2sin(2t)
y'=-2K1sin(2t)+2K2cos(2t)
y''=-4K1cos(2t)-4K2sin(2t)
Then:
-4K1cos(2t)-4K2sin(2t)-4K1sin(2t)+4K2cos(2t)+5K1cos(2t)+5K2sin(2t)=34sin(2t)
Break into components:
Cosine:
-4K1+4K2+5K1=0
4K2+K1=0
K1=-4K2
Sine:
-4K2-4K1+5K2=34
K2-4K1=34
K2-4(-4K2)=34
17K2=34
K2=34/17
K2=2
now:
K1=-4(2)
K1=-8
Therefore:
y= c1e-tcos(2t) + c2e-tsin(2t) + 2e-t + -8cos(2t)+2sin(2t)