5
« on: September 28, 2018, 08:18:05 PM »
$p(t) = -1, q(t) = 1+3 \sin(t)$
$\mu(t) = e^{\int p(t)dt} = e^{\int (-1)dt}=e^{-t}$
$\mu y' - \mu y = \mu (1+3\sin(t))$
$e^{-t} y' - e^{-t}y = e^{-t} (1+3\sin(t))$
$\frac{d}{dt}(e^{-t} y) = e^{-t} +3e^{-t}\sin(t)$
$\int \frac{d}{dt}(e^{-t} y) dt= \int e^{-t} +3e^{-t}\sin(t) dt$
$e^{-t} y = -e^{-t} - \frac{3}{2}\sin te^{-t} - \frac{3}{2}\cos te^{-t} + c$
$y(t) = -1 - \frac{3}{2}\sin t - \frac{3}{2}\cos t + ce^t$
$y(0) = y_0 = -1 - \frac{3}{2}\sin(0) - \frac{3}{2}\cos(0) + ce^0 = -1 - \frac{3}{2} + c$
$c = y_0 + \frac{5}{2}$
$y(t) = -1 - \frac{3}{2}\sin t - \frac{3}{2}\cos t + (y_0 + \frac{5}{2}) e^t$
If $y_0 < - \frac{5}{2}, y_0 + \frac{5}{2} < 0$,
$$\lim_{t\to\infty} y(t) = \lim_{t\to\infty} (y_0 + \frac{5}{2}) e^t = -\infty$$
If $y_0 > - \frac{5}{2}, y_0 + \frac{5}{2} > 0$,
$$\lim_{t\to\infty} y(t) = \lim_{t\to\infty} (y_0 + \frac{5}{2}) e^t = +\infty$$
If $y_0 = - \frac{5}{2}, y_0 + \frac{5}{2} = 0$,
$$\lim_{t\to\infty} y(t) = \lim_{t\to\infty} (-1 - \frac{3}{2}\sin t - \frac{3}{2}\cos t)$$
is the only value of $y_0$ that makes the solution finite
$y_0 = - \frac{5}{2}$