1
Final Exam / Re: FE-P6
« on: December 17, 2018, 09:10:17 PM »Question: For $H(x,y)$ what are points $(\pm 4,0)$ and $(0,0)$?From the grape, I don't think any of them is max or min.
This section allows you to view all posts made by this member. Note that you can only see posts made in areas you currently have access to.
Question: For $H(x,y)$ what are points $(\pm 4,0)$ and $(0,0)$?From the grape, I don't think any of them is max or min.
$\begin{bmatrix} x'\\ y' \end{bmatrix}=\begin{bmatrix} 1 &-2 \\ 1&-1 \end{bmatrix}+\begin{bmatrix} sec(t)\\0 \end{bmatrix}$$\lambda=i$, eigenvector is $\begin{pmatrix} -1\\ i-1 \end{pmatrix}$
so $det\begin{bmatrix} 1-\lambda &-1 \\ 1& -1-\lambda \end{bmatrix}=0$
$\lambda=i/-i$ and eigenvector for i is $\begin{pmatrix} 1+i\\ 1 \end{pmatrix}$
I think W2 is negative.
$$W_2 = \left|
\begin {array}{ccc}
{e^t}&0&e^{2t}\\
e^t&0&2e^{2t}\\
e^t&1& 4e^{2t}
\end {array}
\right| = e^{3t}$$
$\psi(x,y)=x^2 \sin^4(y)+x \sin^3(y)+2\sin^5 (y)$
$$Homo: r^3 -3r^2+4r-2=0$$$$ y_{p2}(t)=-e^{-t} $$ because W2 is negative
$$r_1=1r_2=1+ir_3=1-i$$
$$\therefore y_c(t)=c_1e^t+c_2e^tcost+c_3e^tsint$$
Non-Homo:
$$y^{'''}-3y{''}+4y{'}-2y=10e^t+10e^{-t} +20cost$$
$$y^{'''}-3y{''}+4y{'}-2y=10e^t$$
$$y_{p1}(t)=Ate^t$$
$$y^{'}=Ate^t+ Ae^t $$
$$y^{''} = Ate^t+ 2Ae^t $$
$$y^{'}= Ate^t+ 3Ae^t $$
substitute above into the function:
$$y^{'''}-3y{''}+4y{'}-2y=10e^t$$
$$we have: A=-10$$
$$\therefore y_{p1}(t)=-10e^t $$
$$y^{'''}-3y{''}+4y{'}-2y=10e^t$$
$$y^{'''}-3y{''}+4y{'}-2y=10e^{-t}$$
$$y_{p2}(t)=Ae^{-t} $$
$$y^{'}= -Ae^{-t}$$
$$y^{''}= Ae^{-t} $$
$$y^{'''}= -Ae^{-t} $$
substitute above into the function:
$$y^{'''}-3y{''}+4y{'}-2y=10e^{-t}$$
I think A should be -1 here.
$$\therefore y_{p2}(t)=-e^{-t} $$
$$y^{'''}-3y{''}+4y{'}-2y=20cost$$
$$y_{p3}(t)=Acost+Bsint $$
$$y^{'}= -Asint+Bcost$$
$$y^{''}= -Acost-Bsint $$
$$y^{'''}= Asint-Bcost$$
substitute above into the function:
we have A=2, B=6
$$\therefore y_{p3}(t)=2cost+6sint $$
$$\therefore y(t)= c_1e^t+c_2e^tcost+c_3e^tsint-10e^t- e^{-t} + 2cost+6sint $$